In vitro effect of four fungicides on Colletotrichum gloeosporioides causing anthracnosis on the Red Globe grape variety
PDF (Español (España))

How to Cite

López-Zapata, S. P., & Castaño-Zapata, J. . (2020). In vitro effect of four fungicides on Colletotrichum gloeosporioides causing anthracnosis on the Red Globe grape variety. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(172), 747–758. https://doi.org/10.18257/raccefyn.1139

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Métricas Alternativas


Dimensions

Abstract

Anthracnose is considered one of the most important diseases of grape crops. In this study, we evaluated the in vitro effect on potato dextrose agar (PDA) of four fungicides: benomyl (Benlate® 50 WP), carbendazim (Belico ® 500 SC), chlorothalonil (Odeon® 720 SC), and dodine (Syllit ® 400 SC) using three concentrations on a Colletotrichum gloeosporioides isolate. This species complex causes anthracnose on the Red Globe grape variety. The concentrations of each fungicide were: benomyl at 0.5, 0.25, and 1 g.L-1; carbendazim at  0.6, 0.3, and 1.2 mL.L-1; chlorothalonil at 2.4, 1.2, and 4.8 mL.L-1, and dodine at 1.6, 0.8, and 3.2 mL.L-1. Evaluated the inhibition of mycelial growth and the sporulation of the fungus. The fungus mycelium exposed to the commercial dose of the fungicides was observed using environmental scanning electron microscopy (ESEM). We used a completely randomized design with 13 treatments and five repetitions. Our results showed a degree of differential efficacy for the four fungicides and their effects were directly proportional to the dose used, benomyl and chlorothalonil being the most efficient in controlling the mycelial growth of the fungus. At the commercial dose, sporulation was inhibited at a higher rate by benomyl showing no statistically significant differences with the other products except chlorothalonil and dodine when the recommended dose was reduced by half. The damage observed by ESEM on the fungus mycelium ratified the effect obtained in vitro, i.e., deformed hyphae and irregular growth. The results of this study, complemented by electron microscopy, are promising for the appropriate selection of the best fungicides for controlling anthracnose on grape fruits, subject to the timely and correct diagnosis of the disease.

https://doi.org/10.18257/raccefyn.1139
PDF (Español (España))

References

Agronet. (2018). Estadísticas del cultivo de la uva en Colombia. Accessed on: August 19, 2018. Available at: http://www.agronet.gov.co/estadistica/Paginas/default.aspx

Andriani, D., Wiyono, S., Widodo, W. (2017). Sensitivity of Colletotrichum spp. on chili to benomyl, chlorotalonil, mancozeb, and propineb. J. Fitopatol Indones. 13 (4): 119-126. Doi: 10.14692/jfi.13.4.119

Cabral, J. (2017). Damage to the cytoplasmic membrane and cell death caused by dodine (dodecyl guanidine monoacetate) in Pseudomonas syringae ATCC 12271. Antimicrob Agents Chemother. 35 (2): 341-344. Doi: 0066-4804/91/020341-04$02.00/0

Cannon, P.F., Damm, U., Johnston, P.R., Weir, B.S. (2012). Colletotrichum – current status and future directions. Stud. Mycol. 73 (1): 181-213. Doi: 10.3114/sim0014

Cao, X., Xu, X., Che, H., West, J., Luo, D. (2017). Distribution and fungicide sensitivity of Colletotrichum species complexes from rubber tree in Hainan, China. Plant Dis. 101 (10): 1774-1780 Doi: 10.1094/PDIS-03-17-0352-RE

Çördük, N., Akinci, N., Kaya, N., Yücel, G., Aki, C. (2016). Effects of dodine on total protein content and peroxidase activity in Vicia faba L. SAÜ Fen Bil Der. 20 (3): 627-633. Doi: 10.16984/saufenbilder.22241

Chung, W.H., Chung, W.C., Peng, M.T., Yang, H.R., Huang, J.W. (2010). Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. N Biotechnol. 27 (1): 17-24. Doi: 10.1016/j.nbt.2009.10.004

Daykin, M.E. & Milholland, R.D. (1984). Ripe rot of muscadine grape caused by Colletotrichum gloeosporioides and its control. Phytopathology. 74: 710-714. Doi: 10.1094/Phyto-74-710

Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Foster, G.D. (2012). The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13 (4): 414-430. Doi: 10.1111/j.1364-3703.2011.00783.x

Deokate, A.S., Khilare, V.C., Gangawane, L.V. (2012). Resistance to carbendazim in Gloeosporium ampelophagum (Pass) Sacc. causing anthracnose of grapevine in Maharashtra. Indian J. Plant Prot. 30 (1): 69-70.

Ferreira, T. & Rasband, W. (2018). ImageJ User Guide/IJ 1.46r. 2012. Bioimage Informatics. Fungicide Resistance Action Committee (FRAC). (2020). FRAC code list ©*. Fungal control agents sorted by cross resistance pattern and mode of action. Accessed on august 10, 2020. Available at: https://www.frac.info/docs/default-source/publications/frac-code-list/fraccode-list-2020-finalb16c2b2c512362eb9a1eff00004acf5d.pdf?sfvrsn=54f499a_2

Gaviria, H.V., Patiño, H.L., Saldarriaga, C.A. (2013). Evaluación in vitro de fungicidas comerciales para el control de Colletotrichum spp., en mora de Castilla. Corpoica Cienc. Tecnol. Agropecuaria. 14 (1): 67-75.

Gil, L.F., Varzea, V.M., Do Ceu Silva M. (2002). La enfermedad de las cerezas del café –CBD causada por Colletotrichum kahawae. Avance técnico Cenicafé 298.

Greer, L., Harper, J., Savocchia, S., Samuelian, S., Steel, C. (2002). Ripe rot of south‐eastern Australian wine grapes is caused by two species of Colletotrichum: C. acutatum and C. gloeosporioides with differences in infection and fungicide sensitivity. Aust. J. Grape Wine Res. 17: 123-128. Doi: 10.1111/j.1755-0238.2011.00143.x

Han, Y.C., Zeng, X.G., Xiang, F.Y., Zhang, Q.H., Guo, C., Chen, F.Y., Gu, Y.C. (2018). Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. J. Integr. Agric. 17 (6): 1391-1400. Doi: 10.1016/S2095-3119(17)61854-9

Hu, M., Grabke, A., Dowling, M., Holstein, H., Schanabel, G. (2002.). Resistance in Colletotrichum siamense from peach and blueberry to thiophanate methyl and azoxystrobin. Plant Dis. 99: 806-814.

Hwang, S., Kim, H. R., Kim, J., Park, J. J. H., Lee, S. B., Cheong, S. R., Kim, T. H. (2010). Sensitivity of Colletotrichum spp. isolated from grapes in Korea to carbendazim and the mixture of carbendazim plus diethofencarb. P. Pathol. J. 26 (1): 49-56. Doi: 10.5423/PPJ.2010.26.1.049

Hyde, K.D., Cai, L., Cannon, P.F., Crouch, J.A., Crous, P.W., Damm, U. (2009). Colletotrichum – names in current use. Fungal Divers. 39: 147-182.

Jiang, J., Zhai, H., Li, H., Wang, Z., Chen, Y., Hong, N., Wang, G., Chofong, G.N., Xu, W. (2014). Identification and characterization of Colletotrichum fructicola causing black spots on young fruits related to bitter rot of pear (Pyrus bretschneideri Rehd.) in China. Crop Prot. 58: 41-48. Doi: 10.1016/j.cropro.2014.01.003

Khilare, V.C. & Chavan, S.S. (2010). Effect of passage on the development of carbendazim resistance in Gloeosporium ampelophagum causing anthracnose of grapes. Biosci. Biotech. Res. Asia. 8 (2): 501-504. Doi: 10.13005/bbra/892

Krol, E. (2005). Influence of some chemicals on the viability of Phomopsis viticola Sacc. spores. J Plant Prot. Res. 45 (3):194-203.

Kumar, A.S., Reddy, N.E., Reddy, K.H., Devi, M.C. (2007). Evaluation of fungicidal resistance among Colletotrichum gloeosporioides isolates causing mango anthracnose in agriculture export zone of Andhra Pradesh, India. Plant Pathol. Bulletin. 16: 157-160.

Kumar, N., Singh, R., Kumar, A., Yadav, R.S. (2016). Evaluation of bio-efficacy of some novel fungicides against Colletotrichum capsici (Sydow) disease of chilli (Capsicum annum L.). Plant Archives. 16 (2): 845-848.

Lei, Y., Tang, X.B., Jayawardena, R.S., Yan, J.Y., Wang, X.D., Liu, M. (2016). Identification and characterization of Colletotrichum species causing grape ripe rot in southern China. Mycosphere. 7 (8): 1177-1191. Doi: 10.5943/mycosphere/si/2c/8

Lin, T., Xu, X.F., Dai, D.J., Shi, H.J., Wang, H.D., Zhang, C.Q. (2016). Differentiation in development of benzimidazole resistance in Colletotrichum gloeosporioides complex populations from strawberry and grape hosts. Australas. Plant Pathol. 45 (3): 241-249. Doi: 10.1007/s13313-016-0413-8

López-Zapata, S.P., Castaño-Zapata, J., Arango-Isaza, R., Vásquez-Barajas, D.A. (2019). Caracterización del agente causante de la deformación de los frutos de la uva (Vitis vinifera L.) var. Red Globe, en La Unión, Valle del Cauca, Colombia. Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 43 (167): 241-249. Doi: 10.18257/raccefyn.844

Lorenz, D.H., Eichorn, K.W., Bleiholder, H., Klose, R., Meier, U., Weber, E. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala, Vitic. Enol. Sci. 49: 66-70.

Ma, Z. & Michailides, T. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection. 24 (10): 853-863. Doi: 10.1016/j.cropro.2005.01.01

Magarey R.D, Emmett RW, Magarey PA, Franz PR. (1993). Evaluation of control of grapevine anthracnose caused by Eisinoe ampelina by pre-infection fungicides. Australas. Plant athol. 22 (2): 48-52. Doi: 10.1071/APP9930048

Narkar, S.P., Shetty, D.S., Sawant, I.S., Sawant, S.D. (2012). Paradigm shift in the resistance ofgrape isolates of Colletotrichum gloeosporioides to carbendazim and their bio-control by Trichoderma harzianum. Indian Phytopathol. 65: 373-377.

Nita, M. (2015). Species identification and examining QoI and Captan resistance among Colletotrichum acutatum and Colletotrichum gloeosporioides isolates found in VA vineyards. 1-10. SRSFC Project Progress Report.

Peres, N., Souza, N., Peever, T., Timmer, L. (2004). Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis. 88 (2): 125-130. Doi: 10.1094/PDIS.2004.88.2.125

Peres, N., Timmer, L., Adaskaveg, J., Correl, J. (2005.). Lifestyles of Colletotrichum acutatum. Plant Dis. 89 (8):784-796. Doi: 10.1094/PD-89-0784

Peng, L.J., Sun, T., Yang, Y., Cai, L., Hyde, K.D., Bahkali, A.H., Li, Z.Y. (2013). Colletotrichum species on grape in Guizhou and Yunnan provinces, China. Mycoscience. 54 (1): 29-41. Doi: 10.1016/j.myc.2012.07.006

Santamaría, F., Díaz, R., Gutiérrez, O., Santamaría, J., Larqué, A. (2011). Control de dos especies de Colletotrichum causantes de antracnosis en frutos de papaya Maradol. Rev. Mex. de Cienc. Agric. 2 (5): 631-643.

Sawant, I.S., Narkar, S.P., Shetty, D.S., Upadhyay, A., Sawant, S.D. (2012). Emergence of Colletotrichum gloeosporioides sensu lato as the dominant pathogen of anthracnose disease of grapes in India as evidenced by cultural, morphological and molecular data. Australas. Plant Pathol. 41 (5): 493-504. Doi: 10.1007/s13313-012-0143-5

Shetty, D., Narkar, S., Sawant, I., Sawant, S. (2014). Efficacy of quinone outside inhibitors (QoI) and demethylation inhibitors (DMI) fungicides against grape anthracnose. Indian Phytopathol. 67 (2): 174-178.

Shiraishi, M., Yamada, M., Mitani, N., Ueno, T., Nakaune, R., Nakano, M. (2006). Rapid screening assay for ripe rot resistance in grape cultivars. J. Japan Soc. For Hortic. Sci. 75 (3): 264-266. Doi: 10.2503/jjshs.75.264

Subhani, M. (2015). Isolation and Efficacy of Fungicides and Homeo-Fungicides against Anthracnose of Chilies Caused by Colletotrichum capsici. Pak. J. Nutr. 14 (6): 325-329. Doi: 10.3923/pjn.2015.325.329

Tóth, A., Petrocczy, M., Hedegús, M., Nagy, G., Lovász, C., Ágoston, J., Palkovics, L. (2012). Development of plant protection technology against sour cherry anthracnose. J. Agric Sci. 50: 54-59.

Whitelaw-Weckert, M.A., Curtin, S.J., Huang, R., Steel, C.C., Blanchard, C.L., Roffey, P.E. (2007). Phylogenetic relationships and pathogenicity of Colletotrichum acutatum isolates from grape in subtropical Australia. Plant Pathol. 56 (3): 448-463. Doi: 10.1111/j.1365-3059.2007.01569.x

Wong, F.P., De La Cerda, K.A., Hernández, R., Midland, S. (2008). Detection and characterization of benzimidazole resistance in California populations of Colletotrichum cereale. Plant Dis. 92: 239-24.

Xu, X.F., Lin, T., Yuan, S.K., Dai, D. J., Shi, H. J., Zhang, C. Q., Wang, H. D. (2014). Characterization of baseline sensitivity and resistance risk of Colletotrichum loeosporioides complex isolates from strawberry and grape to two demethylation-inhibitor fungicides, prochloraz and tebuconazole. Australasian Plant Pathol. 43: 605-613. Doi: 10.1007/s13313-

-0321-8

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales