Reaction and yield of tomato micrografts (Solanum spp.) inoculated with vascular wilt-causing Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen
PDF (Español (España))

How to Cite

García-Jaramillo, D. J. ., López-Zapata, S. P., Bustamante-Granada, S. ., López , W. R. ., Castaño-Zapata, J., & Ceballos-Aguirre, N. . (2022). Reaction and yield of tomato micrografts (Solanum spp.) inoculated with vascular wilt-causing Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(180), 714–729. https://doi.org/10.18257/raccefyn.1688

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Métricas Alternativas


Dimensions

Abstract

Vascular wilt in tomato crops (Solanum lycopersicum) caused by Fusarium oxysporum f. sp. lycopersici (Fol), whose habitat is the soil, is a devastating disease that can cause fruit production losses of up to 100%. Grafting is among the management alternatives for the disease. In our study, the reaction to the disease was determined by the incidence expressed as a percentage and the yield of the micrografts was determined by using three Cherry-type rootstocks, IAC412, IAC426, and IAC391 and scions of the commercial varieties, Calima and Carguero inoculated with an isolate of F. oxysporum f. sp. lycopersici race 2. The results indicated that the combinations of the IAC391/CAR and IAC412/CAR heterografts inoculated with the fungus were the most promising in terms of average fruit weight with 59 and 79 g and a yield of 14.9 and 21.3 t.ha- 1, respectively. The commercial variety Carguero had a fruit average weight of 102 g and a yield of 13.9 t.ha-1 indicating that the effect of micrografting and the presence of the fungus reduced the average weight of the fruit in the heterografts but increased the yield, which indicates that it is an alternative for the selection of rootstocks tolerant to F. oxysporum f. sp. lycopersici and that grafting with commercial materials increases tomato yield.

https://doi.org/10.18257/raccefyn.1688

Keywords

Fungus | Soil | Solanaceae | Wilt | Micrograft | Production
PDF (Español (España))

References

Agrios, N. (2005). Plant pathology. fifth edition. Elsevier Academic Press. 922 pp.

Báez-Valdez, E., Carrillo-Fasio. J.A., Báez-Sañudo, M.A., García-Estrada, R.S., Valdez-Torres, J.B., Contreras-Martínez, R. (2010). Resistant rootstocks utilization for Fusarium control (Fusarium oxysporum f. sp. lycopersici Snyder & Hansen race 3) in tomato (Lycopersicon esculentum Mill) under shade conditions. Revista Mexicana de Fitopatología, 28, 111-123.

Bletsos, F.A. & Olympios, C.M. (2009). Rootstocks and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. The European Journal of Plant Science and Biotechnology, 2 (1), 62-73.

Botero, V., Hoyos-Carvajal, L., Marín, J. (2018). Detección de plantas asintomáticas de Solanum lycopersicum L. infectadas con Fusarium oxysporum usando espectroscopia de reflectancia VIS. Ciencias Hortícolas, 12 (2), 436-446. http://doi.org/10.17584/rcch.2018v12i2.7293

Cardona-Piedrahita, L.F., Castaño-Zapata, J., Marín-Serna, S.M., González-Guzmán, J.J., García-Jaramillo, D.J., Ceballos-Aguirre, N. (2021). In vitro study of some components of resistance of Cherry tomatoes to Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen. FITOTECNIA No. 288, pp 2.

Carmona, S.L., Burbano-David, D., Gómez, M., López, W., Ceballos, N., Castaño-Zapata, J., Simbaqueba, J., Soto-Suárez, M. (2020). Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens, 9 (70), 23 p. https://doi.org/10.3390/pathogens9010070

Castaño-Zapata, J. (2016). Principios básicos de fitoepidemiología. Segunda reimpresión. Editorial Universidad de Caldas, pp. 398.

Ceballos, N., López, W., Orozco-Cárdenas, M., Morillo, Y., Vallejo-Cabrera, F. (2017). Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia Campinas, 76 (2), 220-228. https://doi.org/10.1590/1678-4499.116

Curtis, F., Palmieri, D., Vitullo, D., Lima, G. (2014). First report of Fusarium oxysporum f. sp. pisi as causal agent of root and crown rot on chickpea (Cicer arietinum L.) in Southern Italy. Plant Disease, 98 (7), 995. https://doi.org/10.1094/PDIS-09-13-0941-PDN

Di Gioia, F., Serio, F., Buttaro, D., Ayala, O., Santamaría, P. (2010). Vegetative growth, yield, and fruit quality of ‘Cuore di Bue’, an heirloom tomato, as influenced by rootstock. Journal of Horticultural Science and Biotechnology, 85 (6),477-482. https://doi.org/10.1080/14620316.2010.11512701

Djidonou, D., Simonne, A.H., Koch, K.E., Brecht, J.K., Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. American Society of Horticultural Science, 51 (12), 1618-1624. https://doi.org/10.21273/HORTSCI11275-16

Fang, X., Kuo, J., You, M.P., Finnegan, P., Barbetti, M. (2012). Comparative root colonization of strawberry cultivars Camarosa and Festival by Fusarium oxysporum f. sp. fragariae. Plant Soil, 358 (1-2), 75-89. https://doi.org/10.1007/s11104-012-1205-8

FAOSTAT. (2022). Production. Crops data. Fecha de consulta: abril de 2022. Disponible en: https://www.fao.org/faostat/es/#data/QI

Forero-Reyes, C. M., Alvarado-Fernández, A. M., Ceballos-Rojas, A. M., Gonzalez-Carmona, L. C., Linares-Linares, M. Y., Castañeda-Salazar, R., Pulido-Villamarín, A., Góngora-Medina, M. E., Cortés-Vecino, J.A., Rodríguez-Bocanegra, M. X. (2018). Evaluacion de la capacidad patogénica de Fusarium spp. En modelos vegetal y murino. Revista Argentina Microbiología, 50 (1), 90-96. https://doi.org/10.1016/j.ram.2016.11.009

Gao, H., Beckman, C.H., Mueller, W.C. (1995). The nature of tolerance to Fusarium oxysporum f. sp. lycopersici in polygenically field-resistant Marglobe tomato plants. Physiological and Molecular Plant Pathology, 46 (5), 401-412. https://doi.org/10.1006/pmpp.1995.1031

Garcés, E., Orozco, A., Zapata, A.C. (1999). Fitopatología en flores. Acta Biológica Colombiana, 4 (2), 5-26.

García-Jaramillo, D.J., Atehortúa-Garcés, L., Castaño-Zapata, J., Ceballos-Aguirre, N. (2018). In vitro micropropagation of commercial and non-commercial tomato genotypes. In Vitro Cellular & Developmental Biology-Plant, 54 (4), 488-488.

Hernández-Martínez, R., López-Benítez, A., Borrego-Escalante, F., Espinoza-Velázquez, J., Sánchez-Aspeytia, D., Maldonado-Mendoza, I.E., López-Ochoa, L.A. (2014). Razas de Fusarium oxysporum f. sp. lycopersici en predios tomateros en San Luis Potosí. Revista Mexicana de Ciencias Agrícolas, 5 (7), 1169-1178.

Herrera, H., Hurtado, A., Ceballos, N. (2015). Estudio técnico y económico del tomate tipo cereza élite (Solanum lycopersicum L. var. cerasiforme) bajo condiciones semicontroladas. Revista Colombiana de Ciencias Hortícolas, 9 (2), 290-300. http://dx.doi.org/10.17584/

rcch.2015v9i2.4185

International Plant Genetic Resources Institute-IPGRI. (1996). Descriptores para el cultivo del tomate (Lycopersicon spp.). IPGRI. Roma,Italia. 131p.

Jaramillo-Noreña, J. E., Sánchez-León, G. D., Rodríguez, V. P., Aguilar-Aguilar, P. A., Zapata-Cuartas, M. A., Guzmán-Arroyave, M. (2013). Tecnología para el cultivo de tomate bajo condiciones protegidas. Bogotá CORPOICA, 482 pp.

Jiménez-Fernández, D., Landa, B.B., Kang, S., Jiménez-Díaz, R.M., Navas-Cortés, J.A. (2013). Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. Plos One, 8 (4), e61360. https://doi.org/10.1371/journal.pone.0061360

Joshi, R. (2018). A review of Fusarium oxysporum on its plant interaction and industrial use. Journal of Medicinal Plants Studies, 6(3), 112-115. https://doi.org/10.22271/plants.2018.v6.i3b.07

López, W. R., García-Jaramillo, D. J., Ceballos-Aguirre, N., Castaño-Zapata, J., Acuña-Zornosa, R., Jovel, J. (2021). Transcriptional responses to Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen infection in three Colombian tomato cultivars. BMC Plant Biology, 21 (1), 1-14. https://doi.org/10.1186/s12870-021-03187-z

Mandal, S., Mallick, N., Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 47 (7), 642-649. https://doi.org/10.1016/j.plaphy.2009.03.001

Marín-Serna, S.M., González-Guzmán, J.J., Castaño-Zapata, J., Ceballos-Aguirre, N. (2014). Respuesta de germoplasma de tomate tipo cereza (Solanum spp.) a la Marchitez vascular [Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen]. Revista Agronomía, 22(2), 48-59.

Moore, N.Y. (1994). Fusarium wilt of banana: pathogen variability and host-pathogen interaction.Ph.D. Thesis. University of Queensland, St. Lucia, Qld. 152 pp.

Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum, 15 (3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Pérez, L., Dita, M., Martínez, E. (2014). Prevention and diagnostic of Fusarium wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (TR4). Proc. Regional Workshop on the Diagnosis of Fusarium Wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4: Mitigating the Threat and Preventing its Spread in the Caribbean, St. Augustine, Trinidad and Tobago. FAO, Rome, Italy. 74 pp.

Ravindra, S., Biswas, S.K., Nagar, D., Singh, J., Singh, M., Mishra, Y. (2015). Sustainable integrated approach for management of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.). Sander & Hansen. Sustainable Agricultural Research, 4(1), 138-147. https://doi.org/ 10.5539/sar.v4n1p138

Rouphael, Y., Cardarelli, M., Colla, G., Rea, E. (2010). Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Horticultural Science, 43 (3), 730-736. https://doi.org/10.21273/HORTSCI.43.3.730

SAKATA ® (2022). El éxito comienza por la raíz. Fecha de consulta: julio 18 de 2022. Disponible en: https://www.sakata.com.br/blog/es 2022/07/18/el-exito-comienza-por-la-raiz/SAS Institute Inc. (2013) Statistical analysis system user's guide. Version 9.4. Cary, Statistical Analysis System Institute. 513p.

Singh, V.K., Singh, H.B., Upadhyay, R.S. (2017). Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemestry, 118, 320-332. https://doi.org/10.1016/j.plaphy.2017.06.028

Srinivas, C., Nirmala, D., Narasimha, D., Murthy, K., Dhananjaya, C., Lakshmeesha, T.R., Singh, B., Kumar, N., Niranjana, S.R., Hashem, A., Alqarawi, A., Tabassum, Fathi, E., Nayaka, C., Srivastava, R. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences, 26 (7), 1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002

Steinkellner, S., Mammerler, R., Vierheilig, H. (2008). Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. European Journal of Plant Pathology, 122 (3), 395-401. https://doi.org/10.1007/s10658-008-9306-1

Tampoare, G.B., Adazabra, A.N., Milliar, G. (2013). Analyzing the economic benefit of fresh tomato production at the Tono irrigation cheme in upper east region of Ghana. Elixir Agriculture, 58, 14613-14617.

Tessier, B.J., Mueller, W.C., Morgham, A.T. (1990). Histopathology and ultrastructure of vascular responses in peas resistant or susceptible to Fusarium oxysporum f. sp. pisi. Phytopathology, 80, 756-764. https://doi.org/10.1094/Phyto-80-756

Trionfetti, P., Colla, G., Granati, E., Temperini, O., Crinó, P., Saccardo, F. (2002). Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93 (3-4), 281-288. https://doi.org/10.1016/S0304-4238(01)00335-1

Velasco-Alvarado, M.D.J., Castro-Brindis, R., Castillo-González, A.M., Avitia-García, E., Sahagún-Castellanos, J., Lobato-Ortiz, J.S.R. (2016). Mineral composition, biomass and fruit yield in grafted tomato (Solanum lycopersicum L.). Interciencia, 41 (10), 703-708.

Zvirin, T., Herman, R., Brotman, Y., Denisov, Y., Belausov, E., Freeman, S., Perl-treves, R. (2010). Differential colonization and defense responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1.2. Plant Pathology, 59, 576-585. https://doi. org/10.1111/j.1365-3059.2009.02225.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales