Caracterización preliminar de los modos baroclínicos dominantes de un embalse tropical andino durante un período seco
Portada 43 (167) 2019
PDF (English)
HTML

Cómo citar

Posada-Bedoya, A., Gómez-Giraldo, A., & Román Botero, R. (2019). Caracterización preliminar de los modos baroclínicos dominantes de un embalse tropical andino durante un período seco. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(167), 297–310. https://doi.org/10.18257/raccefyn.799

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

A partir de datos de campo y un modelo numérico simple, se investigaron las ondas internas   escala de cuenco en un embalse tropical andino durante un período seco. La estructura y el período de las oscilaciones baroclínicas observadas, se infirieron a partir del análisis espectral de las series de temperatura medidas y de los desplazamientos verticales de las isotermas asociadas. El modo de oscilación dominante identificado a partir de los datos de campo constaba de dos capas que oscilaban con velocidades verticales y fases contrarias (modo V2), y con un período de 24 h. Los modos baroclínicos verticales teóricos del embalse se estimaron a partir de un eigenmodelo simple, el cual predijo el período y la estructura vertical del modo dominante identificado a partir de las observaciones, indicando también que las oscilaciones de la velocidad horizontal en cada capa estaban en fase (modo V2H1) y con un período natural cercano a 24 h. El forzamiento del viento mostró una variabilidad periódica con un período dominante cercano a las 24 h, por lo que concluimos que el modo V2H1 fue el dominante durante el período analizado y sometido a excitación por resonancia con el forzamiento diurno del viento. Se modeló el embalse como un sistema lineal masa-resorte, amortiguado y forzado, con el fin de estimar la relación de amortiguamiento de las oscilaciones baroclínicas, y se obtuvieron oscilaciones subamortiguadas con una tasa de amortiguamiento similar a la reportada en otros lagos alrededor del mundo. También se investigó el potencial del modo V2H1 en la generación vertical de turbulencia debido a inestabilidades cortantes usando el número de Richardson del gradiente, y encontramos que la producción de turbulencia era baja. Por último, se discuten aquí la estructura vertical de la fase en las oscilaciones de las ondas internas y las potenciales implicaciones del campo de ondas internas en la ecología del embalse. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.799
PDF (English)
HTML

Citas

Anohin, V. V., Imberger, J., Romero, J. R., Ivey, G. N. (2006). Effect of Long Internal Waves on the Quality of Water Withdrawn from a Stratified Reservoir. Journal of Hydraulic Engineering. 132: 1134-1145.

Antenucci, J. P. & Imberger, J. (2001). Energetics of long internal gravity waves in large lakes. Limnology and oceanography. 46 (7): 1760-1773.

Antenucci, J. P., Imberger, J., Saggio, A. (2000). Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnology and Oceanography, 45: 1621-1638.

Bäuerle, E. (1998). Excitation on internal seiches by periodic forcing. In J. Imberger [ed.], Physical processes in lakes and oceans. Coastal and Estuarine Studies. V. 54. AGU. p. 167-178.

Bendat, J. S. & Piersol, A. G. (1986). Random data: analysis and measurement procedures. 2nd ed. Wiley. p. 605.

Boegman, L., Imberger, J., Ivey, G. N., Antenucci, J. P. (2003). High-frequency internal waves in large stratified lakes. Limnology and Oceanography. 48: 895-919.

Bouffard, D., Boegman, L., Rao, Y. R. (2012). Poincaré wave– induced mixing in a large lake. Limnology and oceanography. 57 (4): 1201-1216.

Cortés, A., Fleenor, W., Wells, M., de Vicente, I., Rueda, F. (2014). Pathways of river water to the surface layers of stratified reservoirs. Limnology and Oceanography. 59 (1):233-250.

Csanady, G. T. (1967). Large‐scale motion in the Great Lakes. Journal of Geophysical Research. 72 (16): 4151-4162.

Csanady, G. T. (1972). Response of large stratified lakes to wind. Journal of Physical Oceanography. 2 (1): 3-13.

Cushman-Roisin, B., Tverberg V., Pavia, E.G. (1989). Resonance of internal waves in fjords: a finite-difference model. J. Mar. Res. 47: 547-567.

Eckert, W., Imberger, J., Saggio, A. (2002). Biogeochemical response to physical forcing in the water column of a warm monomictic lake. Biogeochemistry. 61 (3): 291-307.

Evans, M. A., MacIntyre, S., Kling, G. W. (2008). Internal wave effects on photosynthesis: Experiments, theory, and modeling. Limnology and Oceanography. 53 (1):339-353.

Fricker, P. D., Nepf, H. M. (2000). Bathymetry, stratification, and internal seiche structure. Journal of Geophysical Research. 105 (C6): 14237-14251.

Gill, A. E. (1982). Atmosphere–ocean dynamics. Academic. Press. London. p. 662.

Gilman, D. L., Fuglister, F. J., Mitchell Jr. J. M. (1963): On the power spectrum of “red noise”. J. Atmos. Sci. 20: 182-184.

Gloor, M., Wüest, A., Imboden, D. M. (2000). Dynamics of mixed bottom boundary layers and its implications for diapycnal transport in a stratified, natural water basin. Journal of Geophysical Research: Oceans. 105 (C4): 8629-8646.

Gloor, M., Wüest, A., Münnich, M. (1994). Benthic boundary mixing and resuspension induced by internal seiches. Hydrobiologia. 284 (1): 59-68.

Gómez-Giraldo, A., Imberger, J., Antenucci, J. P. (2006). Spatial structure of the dominant basin-scale internal waves in Lake Kinneret. Limnology and Oceanography. 51 (1): 229-246.

Gómez-Giraldo, A., Imberger, J., Antenucci, J. P., Yeates, P. S.(2008). Wind-shear generated high-frequency internal waves as precursors to mixing in a stratified lake. Limnology and Oceanography. 53 (1): 354-367.

Gómez-Giraldo, E. A., Largo, D.C., Franco, J.D., Román- Botero, R., Escorcia, H., Arbeláez, A.C. (2012). Caracterización de los procesos de transporte dominantes en los embalses Porce II, Riogrande II y La Fe. In: Palacio, J. (ed.), Informes técnicos embalses Porce II, Riogrande II y La Fe; “Estudio de la problemática ambiental de tres embalses de Empresas Públicas de Medellín para la gestión integral y adecuada del recurso hídrico”. Universidad de Antioquia, Universidad Nacional de Colombia - Sede Medellín, Empresas Públicas de Medellín.

Heaps, N. S., Ramsbottom, A. E. (1966). Wind effects on water in a narrow two-layered lake. Phil. Trans. R. Soc. London, Ser. A. 259: 391-430.

Henderson, S. M. (2016). Turbulent production in an internal wave bottom boundary layer maintained by a vertically propagating seiche. Journal of Geophysical Research: Oceans. 121 (4): 2481-2498.

Henderson, S. M. & Deemer, B. R. (2012). Vertical propagation of lakewide internal waves, Geophys. Res. Lett. 39. L06405.

Hingsamer, P., Peeters F., Hofmann H. (2014) The Consequences of Internal Waves for Phytoplankton Focusing on the Distribution and Production of Planktothrix rubescens. PLoS ONE. 9 (8): e104359.

Hogg, C. A., Egan, G. C., Ouellette, N. T., Koseff, J. R. (2018). Shoaling internal waves may reduce gravity current transport. Environmental Fluid Mechanics. 18 (2): 383-394.

Hondzo, M., Haider, Z. (2004). Boundary mixing in a small stratified lake. Water resources research. 40 (3): 1-12.

Horn, D. A., Imberger, J., Ivey, G. N. (2001). The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech. 434: 181-207.

Horn, W., Mortimer, C. H., Schwab, D. J. (1986). Wind-induced internal seiches in Lake Zurich observed and modeled. Limnology and Oceanography. 31 (6): 1232-1254.

Ibarra, G., De la Fuente, A., Contreras, M. (2015). Effects of hydropeaking on the hydrodynamics of a stratified reservoir: The Rapel Reservoir case study. Journal of Hydraulic Research. 53 (6): 760-772.

Imam, Y. E., Laval, B., Pieters, R., Lawrence, G. (2013). The strongly damped baroclinic response to wind in a multibasin reservoir. Limnology and Oceanography. 58 (4): 1243- 258.

Imberger, J. (1998). Flux paths in a stratified lake: A review. In J.

Imberger (Editor), Physical processes in lakes and oceans. Coastal and Estuarine Studies. V. 54. AGU. pp. 1-17.

Imberger, J. & Fandry, C. (1975). Withdrawal of a stratified fluid from a vertical two-dimensional duct. Journal of Fluid Mechanics. 70 (2): 321-332.

Largo-Gaviria, D. C. (2011). Spatio-temporal characterization of the thermal structure of Porce II reservoir. Master degree thesis, Univ. Nacional de Colombia, Medellín, Colombia.

Lemckert, C., Antenucci, J., Saggio, A., Imberger, J. (2004). Physical properties of turbulent benthic boundary layers generated by internal waves. Journal of Hydraulic Engineering. 130 (1): 58-69.

Lemmin, U. (1987). The structure and dynamics of internal waves in Baldeggersee. Limnology and Oceanography. 32: 43-61.

Lemmin, U., Mortimer, C. H., Bäuerle, E. (2005). Internal seiche dynamics in Lake Geneva. Limnology and Oceanography. 50: 207-216.

Lewis Jr., W. M. (1987). Tropical limnology. Annual review of ecology and systematics. 18: 159-184.

Lewis Jr., W. M. (1996). Tropical lakes: How latitude makes a difference. Perspectives in tropical limnology. pp. 43-64.

SPB Academic Publishing bv, Amsterdam, The Netherlands. Lewis, W. M. (2000). Basis for the protection and management of tropical lakes. Lakes & Reservoirs: Research & Management. 5: 35-48.

Lorke, A., Peeters, F., Wüest, A. (2005). Shear‐induced convective mixing in bottom boundary layers on slopes. Limnology and Oceanography. 50 (5): 1612-1619.

Lorrai, C., Umlauf, L., Becherer, J. K., Lorke, A., Wüest, A. (2011). Boundary mixing in lakes: 2. Combined effects of shear‐and convectively induced turbulence on basin‐scale mixing. Journal of Geophysical Research: Oceans. 116 (C10).

Maas, L. R. & Lam, F.-P. A. (1995). Geometric focusing of internal waves. Journal of Fluid Mechanics. 300: 1-41.

MacIntyre, S. (1993). Vertical mixing in a shallow, eutrophic lake: Possible consequences for the light climate of phytoplankton. Limnology and Oceanography. 38 (4): 798-817.

MacIntyre, S., Flynn, K. M., Jellison, R., Romero, J. R. (1999). Boundary mixing and nutrient fluxes in Mono Lake, California. Limnology and Oceanography. 44 (3): 512-529.

MacIntyre, S. & Jellison, R. (2001). Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. In Saline Lakes, p. 13-29. Springer, Dordrecht.

Maurer, B. D. & Linden, P. (2014). Intrusion-generated waves in a linearly stratified fluid. J. Fluid Mech. 752: 282-295.

Maxworthy, T., Lielich J., Simpson, J. E., Meiburg, E. H. (2002). Propagation of a gravity current in a linearly stratified fluid. J. Fluid Mech. 453: 371-394.

Miles, J. W. (1961). On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4): 496-508.

Monismith, S. G. (1985). Wind-forced motions in stratified lakes and their effect on mixedlayer shear. Limnology and Oceanography. 30: 771-783.

Monismith, S. (1987). Modal response of reservoirs to wind stress. Journal of Hydraulic Engineering. 113 (10): 1290-1304.

Mortimer, C. H. (1952). Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere. Phil. Trans. R. Sot. Lond. Ser. B. 236: 355-404.

Mortimer, C. H. (1953). The resonant response of stratified lakes to wind. Schweizerische Zeitschrift für Hydrologie. 15 (1): 94-151.

Mortimer, C. H. (1974). Lake hydrodynamics. Verh. Int. Ver. Limnol. 20: 124-197.

Mortimer, C. H. (2004). Lake Michigan in motion: Responses of an inland sea to weather, earth-spin, and human activities. Univ of Wisconsin Press.

Münnich, M. (1996). The influence of bottom topography on internal seiches in stratified media. Dynamics of Atmospheres and Oceans. 23 (1-4): 257-266.

Münnich, M., Wüest, A., Imboden, D. M. (1992). Observations of the second vertical mode of the internal seiche in an alpine lake. Limnology and Oceanography. 37 (8): 1705-1719.

Nash, J. D. & Moum, J. N. (2005). River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature. 437 (7057): 400-403.

Nilssen, J. P. (1984). Tropical lakes—functional ecology and future development: The need for a process-orientated approach. Hydrobiologia. 113: 231-242.

Pannard, A., Beisner, B. E., Bird, D. F., Braun, J., Planas, D., Bormans, M. (2011). Recurrent internal waves in a small lake: potential ecological consequences for metalimnetic phytoplankton populations. Limnology and Oceanography: Fluids and Environments. 1 (1): 91-109.

Parinet, B., Lhote, A., Legube, B. (2004). Principal component analysis: an appropriate tool for water quality evaluation and management – application to a tropical lake system. Ecological Modelling. 178: 295-311.

Pérez-Losada, J., Roget, E., Casamitjana, X. (2003). Evidence of high vertical wave-number behavior in a continuously stratified reservoir: Boadella, Spain. Journal of Hydraulic Engineering. 129 (9): 734-737.

Pierson, D. C. & Weyhenmeyer, G. A. (1994). High resolution measurements of sediment resuspension above an accumulation bottom in a stratified lake. Hydrobiologia. 284: 43-57.

Posada-Bedoya, A., Gómez-Giraldo, E. A., Román-Botero, R. (2017). Effect of density currents on the seasonal evolution of basin-scale internal waves in a Tropical Andean reservoir. 20th International Physical Processes in Natural Waters (PPNW) Workshop.

Preusse, M., Peeters, F., Lorke, A. (2010). Internal waves and the generation of turbulence in the thermocline of a large lake. Limnology and Oceanography. 55 (6): 2353-2365.

Román-Botero, R., Boegman, L., Gómez-Giraldo, A. (2017). Vertical mixing in a tropical Andean Reservoir, Porce II. 20th International Physical Processes in Natural Waters (PPNW) Workshop.

Rozas, C., de la Fuente, A., Ulloa, H., Davies, P., Niño, Y. (2014). Quantifying the effect of wind on internal wave resonance in Lake Villarrica, Chile. Environmental Fluid Mechanics. 14 (4): 849-871.

Schwab, D. J. (1977). Internal free oscillations in Lake Ontario. Limnology and Oceanography. 22 (4): 700-708.

Serra, T., Vidal, J., Casamitjana, X., Soler, M., Colomer, J. (2007). The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnology and Oceanography. 52 (2): 620-634.

Shimizu, K. & Imberger, J. (2008). Energetics and damping of basin-scale internal waves in a strongly stratified lake. Limnology and Oceanography. 53 (4): 1574-1588.

Shimizu, K., Imberger, J., Kumagai, M. (2007). Horizontal structure and excitation of primary motions in a strongly stratified lake. Limnology and Oceanography. 52 (6):2641-2655.

Simpson, J. H., Wiles, P. J., Lincoln, B. J. (2011). Internal seiche modes and bottom boundary-layer dissipation in a temperate lake from acoustic measurements. Limnology and Oceanography. 56 (5):1893-1906.

Soares, M. C. S., Marinho, M. M., Huszar, V. L., Branco, C. W., Azevedo, S. M. (2008). The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes & Reservoirs: Research & Management. 13 (4): 257-269.

Spigel, R. H. & Imberger, J. (1980). The classification of mixedlayer dynamics of lakes of small to medium size. Journal of Physical Oceanography. 10 (7): 1104-1121.

Stevens, C. (1999). Internal waves in a small reservoir. J. Geophys. Res. Oceans. 104: 15777-15788.

Stevens, C., Lawrence, G., Hamblin, P., Carmack, E. (1996). Wind forcing of internal waves in a long narrow stratified lake. Dyn. Atmos. Oceans. 24: 41-50.

Stocker, R., Imberger, J. (2003). Energy partitioning and horizontal dispersion in a stratified rotating lake. J. Phys. Oceanogr. 33: 512-529.

Torrence, C., Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society. 79 (1): 61-78.

Ulloa, H. N., Constantinescu, G., Chang, K., Horna-Munoz, D., Steiner, O. S., Bouffard, D., Wüest, A. (2018). Hydrodynamics of a periodically wind-forced small and narrow stratified basin: A large-eddy simulation experiment. Environmental Fluid Mechanics. 19 (3): 667-698.

Ulloa, H. N., Winters, K. B., de la Fuente, A., Niño, Y. (2015). Degeneration of internal Kelvin waves in a continuous twolayer stratification. Journal of Fluid Mechanics. 777: 68-96.

Valerio, G., Pilotti, M., Luisa Marti, C., Imberger, J. (2012). The structure of basin-scale internal waves in a stratified lake in response to lake bathymetry and wind spatial and temporal distribution: Lake Iseo, Italy. Limnology and Oceanography. 57 (3): 772-786.

Vélez-Castaño, J. D., Gómez-Giraldo, A. (2013). Modelos multicapas para estimar el periodo de los modos naturales de oscilación en lagos y embalses tropicales. Tecnología y ciencias del agua. 4 (2): 171-183.

Vidal, J. & Casamitjana, X. (2008). Forced Resonant Oscillations as a Response to Periodic Winds in a Stratified Reservoir. Journal of Hydraulic Engineering. 134 (4): 416-425.

Vidal, J., Casamitjana, X., Colomer, J., Serra, T. (2005). The internal wave field in Sau reservoir: Observation and modeling of a third vertical mode. Limnology and Oceanography. 50 (4): 1326-1333.

Vidal, J., Rueda, F. J., Casamitjana, X. (2007). The seasonal evolution of high vertical mode internal waves in a deep reservoir. Limnology and Oceanography. 52 (6): 2656-2667.

Wiegand, R. C. & Chamberlain, V. (1987). Internal waves of the second vertical mode in a stratified lake. Limnology and Oceanography. 32 (1): 29-42.

Wüest, A. & Lorke, A. (2003). Small-Scale Hydrodynamics in Lakes. Annual Review of Fluid Mechanics. 35 (1): 373-412.

Yeates, P. S., Gómez-Giraldo, A., Imberger, J. (2013). Observed relationships between microstructure patches and the gradient Richardson number in a thermally stratified lake. Environ. Fluid Mech. 13 (65): 205-226.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales