Integral transforms and extended Voigt functions
Portada 43 (167) 2019
PDF
HTML (Español (España))

How to Cite

Pathan, M. (2019). Integral transforms and extended Voigt functions. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(167), 311–318. https://doi.org/10.18257/raccefyn.778

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this paper we introduce a generalization of the Voigt functions and discuss their properties and applications. Some interesting explicit series representations, integrals and identities and their link to Jacobi,Laguerre and Hermite polynomials are obtained. The resulting formulas allow a considerable unification of various special results which appear in the literature. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.778
PDF
HTML (Español (España))

References

Altin, A, Erkus, E. (2006). On a multivariable extension of the Lagrange-Hermite polynomials, Integral Transforms Spec. Funct., 17: 239-244.

Andrews, GE, Askey, R, Roy, R. (1999). Special Functions. Cambridge University Press, Cambridge.

Chan, WChC, Chyan, ChJ, Srivastava, HM. (2001). The Lagrange Polynomials in Several Variables, Integral Transforms Spec. Funct. 12 (2): 139-148.

Dattoil, G, Ricci, PE, Cesarano, C. (2003). The Lagrange polynomials the associated generalizations, and the umbral calculus, Integral Transforms Spec. Funct. 14: 181-186.

Erdelyi, A. et al. (1954). Tables of Integral Transforms, Vol. I. Mc Graw Hill, New York, Toronto, London.

Gould, HW, Hopper, AT. (1962). Operational formulas connected with two generalizations of Hermite polynomials,Duke Math. J. 29: 51-63.

Klusch, D. (1991). Astrophysical Spectroscopy and neutron reactions, Integral transforms and Voigt functions, Astrophys. Space Sci. 175: 229-240.

Luke, YL. (1969). The Special Functions and their approximations, Academic Press, New York, London.

Pathan, MA, Kamarujjama, M, Khursheed Alam M. (2003). Multiindices and multivariable presentations of Voigt Functions, J. Comput. Appl. Math. 160: 251-257.

Pathan, MA, Shahwan, MJS. (2006). New representations of the Voigt Functions, Demonstatio Math. 39: 75-80.

Prudnikov, AP, et al. (1986). Integral and Series, Vol. 2, Special Functions, Gorden and Breech Sciences Publisher, New York.

Srivastava, HM, Joshi, CM. (1967). Certain double Whittaker transforms of generalized hypergeometric functions, Yokohama Math. J. 15: 19-31.

Srivastava, HM, Manocha, HL. (1984). A Treatise on Generating Functions, Ellis Horwood Limited, Chichester.

Srivastava, HM, Miller, EA. (1987). A Unied presentation of the Voigt functions, Astrophys Space Sci. 135: 111-115.

Srivastava, HM, Pathan, MA, Kamarujjama, M. (1998). Some unied presentations of the generalized Voigt functions, Comm. Appl. Anal. 2: 49-64.

Yang S. (1994). A unication of the Voigt functions,Int.J.Math. Educ.Sci.Technol. 25: 845-851.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales