Abstract
Philodendron (Araceae) is one of the richest ornamental genera in the Neotropics, comprising over 600 species. Here, we report the expansion of the eastern distribution of Philodendron asplundii with a new record from the Brazilian state of Pará. We present a detailed morphological description and images of P. asplundii, an updated distribution map, and the results of the ecological niche modeling of the species based on bioclimatic data and the Maxent, Bioclim, Random Forest and Support Vector Machine algorithms (Ensemble Model). Philodendron asplundii occurs in Brazil, Colombia, Ecuador, French Guiana, Perú, and Venezuela. The ecological niche model indicated that P. asplundii has a higher probability of distribution in the northern region of South America, mainly in the central and northwestern part of the Amazon. The model also suggested high habitat suitability in Ecuador’s areas of Andean forests, and in Northern Guyana. These suitable areas for the occurrence of P. asplundii are located in regions with high risk of forest cover loss due to anthropogenic activities. Thus, conservation plans are necessary to avoid the loss of appropriate habitats for the species.
References
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., Anderson, R. P., Bjornson, R. R., & Weston, S. (2019). spThin: Functions for spatial thinning of species occurrence records for use in ecological models. https://cran.r-project.org/web/packages/spThin/index.html/
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Beltrán, J. J. P., Prasca, D. C., & Croat, T. B. (2019). A new species of Philodendron (Araceae) from Sucre Department, Colombia. Novon, 27(1), 33–37. https://doi.org/10.3417/2019325
Busby, J. R. (1991). BIOCLIM, a bioclimatic analysis and prediction system. In C. R. Margules & M. P. Austin (Eds.), Nature conservation: Cost effective biological surveys and data analysis (pp. 64–68). CSIRO.
Canal, D., Köster, N., Celis, M., Croat, T. B., Borsch, T., & Jones, K. E. (2019). Out of Amazonia and back again: Historical biogeography of the species-rich Neotropical genus Philodendron (Araceae). Annals of the Missouri Botanical Garden, 104(1), 49–68. https://doi.org/10.3417/2018266
Canal, D., Köster, N., Jones, K. E., Korotkova, N., Croat, T. B., & Borsch, T. (2018). Phylogeny and diversification history of the large Neotropical genus Philodendron (Araceae): Accelerated speciation in a lineage dominated by epiphytes. American Journal of Botany, 105, 1035–1052. https://doi.org/10.1002/ajb2.1111
Cordeiro, I. M. C. C., Rangel-Vasconcelos, L. G. T., Schwartz, G., & Oliveira, F. A. (2017). Nordeste Paraense: Panorama geral e uso sustentável das florestas secundárias. EDUFRA.
Croat, T. B. (2019). Araceae, a family with great potential. Annals of the Missouri Botanical Garden, 104(1), 3–9. https://doi.org/10.3417/2018213
Croat, T. B., & Ortiz, O. O. (2020). Distribution of Araceae and the diversity of life forms. Acta Societatis Botanicorum Poloniae, 89, 1–23. https://doi.org/10.5586/asbp.8939
Croat, T. B., & Shah, A. (2001). New Amazonian taxa of Philodendron (Araceae). Novon, 11(4), 381–388.
Croat, T. B., Mines, T. E., & Kostelac, C. V. (2019). A review of Philodendron subg. Philodendron (Araceae) from South America with the descriptions of 22 new species. Webbia, 74(2), 193–246. https://doi.org/10.1080/00837792.2019.1660559
Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C. M., Ciuti, S., Elith, J., Gerstner, C., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., … Hartig, F. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485–504. https://doi.org/10.1002/ecm.1309
Dunnington, D., Thorne, B., & Hernangómez, D. (2023). Ggspatial: Spatial data framework for ggplot2. https://cran.r-project.org/web/packages/ggspatial/index.html
Faria, A. P. J., Ligeiro, R., Calvão, L. B., Giam, X., Leibold, M. A., & Juen, L. (2024). Land use types determine environmental heterogeneity and aquatic insect diversity in Amazonian streams. Hydrobiologia, 851, 281–298. https://doi.org/10.1007/s10750-023-05190-x
Fidalgo, O., & Bononi, V. L. R. (1989). Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica.
Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P., & ter Steege, H. (2019). Amazonian tree species threatened by deforestation and climate change. Nature Climate Change, 9, 547–553. https://doi.org/10.1038/s41558-019-0500-2
Guo, X., Yuan, Z., & Tian, B. (2009). Supplier selection based on hierarchical potential support vector machine. Expert Systems with Applications, 36, 6978–6985. https://doi.org/10.1016/j.eswa.2008.08.074
Haigh, A. L., Gibernau, M., Maurin, O., Bailey, P., Carlsen, M. M., Hay, A., Leempoel, K., McGinnie, C., Mayo, S., Morris, S., Pérez-Escobar, O. A., Yeng, W. S., Zuluaga, A., Zuntini, A. R., Baker, W. J., & Forest, F. (2023). Target sequence data shed new light on the infrafamilial classification of Araceae. American Journal of Botany, 110(2), e16117. https://doi.org/10.1002/ajb2.16117
Hijmans, R. J., Bivand, R., Dyba, K., & Pebesma, E., Sumner, M. D. (2024). Terra: Spatial data analysis. https://cran.r-project.org/web/packages/terra/index.html/
Hijmans, R. J., van Etten, J., Sumner, M., Boston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Golicher, D., Gray, J., Greenberg, J. A., Hiemstra, P., Hingee, K., Ilich, A., Institute for Mathematics Applied Geosciences, Karney, C., Mattiuzzi, M., … Hijmans, R. J. (2023). Raster: Geographic data analysis and modeling (Version 2.5-8). https://CRAN.R-project.org/package=raster/
Kessler, M. (2001). Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiversity and Conservation, 10, 1897–1921. https://doi.org/10.1023/A:1013130902993
Klanrit, P., Kitwetcharoen, H., Thanonkeo, P., & Thanonkeo, S. (2023). In vitro propagation of Philodendron erubescens ‘Pink Princess’ and ex vitro acclimatization of the plantlets. Horticulturae, 9, 688. https://doi.org/10.3390/horticulturae9060688
Leal, C. G., Barlow, J., Gardner, T. A., Hughes, R. M., Leitão, R. P., McNally, R. M., Kaufmann, P. R., Ferraz, S. F. B., Zuanon, J., Paula, F. R., Ferreira, J., Thomson, J. R., Lennox, G. D., Dary, E. P., Röpke, C. P., & Pompeu, P. S. (2017). Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. Journal of Applied Ecology, 55(3), 1312–1326. https://doi.org/10.1111/1365-2664.13028
Leimbeck, R. M., Valencia, R., & Balslev, H. (2004). Landscape diversity patterns and endemism of Araceae in Ecuador. Biodiversity and Conservation, 13, 1755–1779. https://doi.org/10.1080/00837792.2019.1646465
Mateo, R. G., Felicisimo, A. M., & Munoz, J. (2011). Species distribution models: A synthetic revision. Revista Chilena de Historia Natural, 84(2), 217–240. https://doi.org/10.4067/S0716-078X2011000200008
Moreira, R. M. (2024). Trends and correlation between deforestation and precipitation in the Brazilian Amazon Biome. Theoretical and Applied Climatology, 155, 3683–3692. https://doi.org/10.1007/s00704-024-04838-5
Naimi, B., & Araújo, M. B. (2016). Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
POWO. (2024). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/
Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction. Ecosystems, 9, 181–199. https://doi.org/10.1007/s10021-005-0054-1
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rede Amazônia Sustentável. (2024). Policy brief: Igarapés. https://ras-network.org/wp-content/uploads/2020/11/RAS_Igarapes_WEB.pdf
Sakuragui, C. M., Calazans, L. S. B., Soares, M. L., Mayo, S. J., & Ferreira, J. B. (2024). Philodendron in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB5015/
Thiers, B. (2024). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/
Wickham, H. (2023). tidyverse: Easily install and load the ‘tidyverse’. https://doi.org/10.32614/CRAN.package.tidyverse
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengstrom, K., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10, 744–751. https://doi.org/10.1111/2041-210X.13152

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales