Resumen
Con más de 600 especies, Philodendron (Araceae) es uno de los géneros ornamentales más ricos del Neotrópico. Reportamos la expansión de la distribución oriental de Philodendron asplundii con un nuevo registro en el estado brasileño de Pará. Presentamos una descripción morfológica detallada e imágenes de P. asplundii, un mapa de distribución actualizado y los resultados del modelado del nicho ecológico de la especie basado en datos bioclimáticos y en los algoritmos Maxent, Bioclim, Random Forest y Support Vector Machine (Ensemble Model). Philodendron asplundii está presente en Brasil, Colombia, Ecuador, Guayana Francesa, Perú y Venezuela. El modelo de nicho ecológico indicó que P. asplundii tiene una mayor probabilidad de distribución en la región norte de Sudamérica, principalmente en la parte central y noroccidental de la Amazonía. Sugirió, asimismo, una gran idoneidad de hábitat en áreas de bosques andinos en Ecuador, y en el norte de Guyana. Las áreas señaladas como adecuadas para P. asplundii se ubican en regiones con alto riesgo de pérdida de cobertura forestal debido a actividades antropogénicas. Por ello se requieren planes de conservación que eviten la pérdida de hábitats apropiados para la especie.
Referencias
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., Anderson, R. P., Bjornson, R. R., & Weston, S. (2019). spThin: Functions for spatial thinning of species occurrence records for use in ecological models. https://cran.r-project.org/web/packages/spThin/index.html/
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Beltrán, J. J. P., Prasca, D. C., & Croat, T. B. (2019). A new species of Philodendron (Araceae) from Sucre Department, Colombia. Novon, 27(1), 33–37. https://doi.org/10.3417/2019325
Busby, J. R. (1991). BIOCLIM, a bioclimatic analysis and prediction system. In C. R. Margules & M. P. Austin (Eds.), Nature conservation: Cost effective biological surveys and data analysis (pp. 64–68). CSIRO.
Canal, D., Köster, N., Celis, M., Croat, T. B., Borsch, T., & Jones, K. E. (2019). Out of Amazonia and back again: Historical biogeography of the species-rich Neotropical genus Philodendron (Araceae). Annals of the Missouri Botanical Garden, 104(1), 49–68. https://doi.org/10.3417/2018266
Canal, D., Köster, N., Jones, K. E., Korotkova, N., Croat, T. B., & Borsch, T. (2018). Phylogeny and diversification history of the large Neotropical genus Philodendron (Araceae): Accelerated speciation in a lineage dominated by epiphytes. American Journal of Botany, 105, 1035–1052. https://doi.org/10.1002/ajb2.1111
Cordeiro, I. M. C. C., Rangel-Vasconcelos, L. G. T., Schwartz, G., & Oliveira, F. A. (2017). Nordeste Paraense: Panorama geral e uso sustentável das florestas secundárias. EDUFRA.
Croat, T. B. (2019). Araceae, a family with great potential. Annals of the Missouri Botanical Garden, 104(1), 3–9. https://doi.org/10.3417/2018213
Croat, T. B., & Ortiz, O. O. (2020). Distribution of Araceae and the diversity of life forms. Acta Societatis Botanicorum Poloniae, 89, 1–23. https://doi.org/10.5586/asbp.8939
Croat, T. B., & Shah, A. (2001). New Amazonian taxa of Philodendron (Araceae). Novon, 11(4), 381–388.
Croat, T. B., Mines, T. E., & Kostelac, C. V. (2019). A review of Philodendron subg. Philodendron (Araceae) from South America with the descriptions of 22 new species. Webbia, 74(2), 193–246. https://doi.org/10.1080/00837792.2019.1660559
Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C. M., Ciuti, S., Elith, J., Gerstner, C., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., … Hartig, F. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485–504. https://doi.org/10.1002/ecm.1309
Dunnington, D., Thorne, B., & Hernangómez, D. (2023). Ggspatial: Spatial data framework for ggplot2. https://cran.r-project.org/web/packages/ggspatial/index.html
Faria, A. P. J., Ligeiro, R., Calvão, L. B., Giam, X., Leibold, M. A., & Juen, L. (2024). Land use types determine environmental heterogeneity and aquatic insect diversity in Amazonian streams. Hydrobiologia, 851, 281–298. https://doi.org/10.1007/s10750-023-05190-x
Fidalgo, O., & Bononi, V. L. R. (1989). Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica.
Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P., & ter Steege, H. (2019). Amazonian tree species threatened by deforestation and climate change. Nature Climate Change, 9, 547–553. https://doi.org/10.1038/s41558-019-0500-2
Guo, X., Yuan, Z., & Tian, B. (2009). Supplier selection based on hierarchical potential support vector machine. Expert Systems with Applications, 36, 6978–6985. https://doi.org/10.1016/j.eswa.2008.08.074
Haigh, A. L., Gibernau, M., Maurin, O., Bailey, P., Carlsen, M. M., Hay, A., Leempoel, K., McGinnie, C., Mayo, S., Morris, S., Pérez-Escobar, O. A., Yeng, W. S., Zuluaga, A., Zuntini, A. R., Baker, W. J., & Forest, F. (2023). Target sequence data shed new light on the infrafamilial classification of Araceae. American Journal of Botany, 110(2), e16117. https://doi.org/10.1002/ajb2.16117
Hijmans, R. J., Bivand, R., Dyba, K., & Pebesma, E., Sumner, M. D. (2024). Terra: Spatial data analysis. https://cran.r-project.org/web/packages/terra/index.html/
Hijmans, R. J., van Etten, J., Sumner, M., Boston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Golicher, D., Gray, J., Greenberg, J. A., Hiemstra, P., Hingee, K., Ilich, A., Institute for Mathematics Applied Geosciences, Karney, C., Mattiuzzi, M., … Hijmans, R. J. (2023). Raster: Geographic data analysis and modeling (Version 2.5-8). https://CRAN.R-project.org/package=raster/
Kessler, M. (2001). Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiversity and Conservation, 10, 1897–1921. https://doi.org/10.1023/A:1013130902993
Klanrit, P., Kitwetcharoen, H., Thanonkeo, P., & Thanonkeo, S. (2023). In vitro propagation of Philodendron erubescens ‘Pink Princess’ and ex vitro acclimatization of the plantlets. Horticulturae, 9, 688. https://doi.org/10.3390/horticulturae9060688
Leal, C. G., Barlow, J., Gardner, T. A., Hughes, R. M., Leitão, R. P., McNally, R. M., Kaufmann, P. R., Ferraz, S. F. B., Zuanon, J., Paula, F. R., Ferreira, J., Thomson, J. R., Lennox, G. D., Dary, E. P., Röpke, C. P., & Pompeu, P. S. (2017). Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. Journal of Applied Ecology, 55(3), 1312–1326. https://doi.org/10.1111/1365-2664.13028
Leimbeck, R. M., Valencia, R., & Balslev, H. (2004). Landscape diversity patterns and endemism of Araceae in Ecuador. Biodiversity and Conservation, 13, 1755–1779. https://doi.org/10.1080/00837792.2019.1646465
Mateo, R. G., Felicisimo, A. M., & Munoz, J. (2011). Species distribution models: A synthetic revision. Revista Chilena de Historia Natural, 84(2), 217–240. https://doi.org/10.4067/S0716-078X2011000200008
Moreira, R. M. (2024). Trends and correlation between deforestation and precipitation in the Brazilian Amazon Biome. Theoretical and Applied Climatology, 155, 3683–3692. https://doi.org/10.1007/s00704-024-04838-5
Naimi, B., & Araújo, M. B. (2016). Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
POWO. (2024). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/
Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction. Ecosystems, 9, 181–199. https://doi.org/10.1007/s10021-005-0054-1
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rede Amazônia Sustentável. (2024). Policy brief: Igarapés. https://ras-network.org/wp-content/uploads/2020/11/RAS_Igarapes_WEB.pdf
Sakuragui, C. M., Calazans, L. S. B., Soares, M. L., Mayo, S. J., & Ferreira, J. B. (2024). Philodendron in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB5015/
Thiers, B. (2024). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/
Wickham, H. (2023). tidyverse: Easily install and load the ‘tidyverse’. https://doi.org/10.32614/CRAN.package.tidyverse
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengstrom, K., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10, 744–751. https://doi.org/10.1111/2041-210X.13152

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales