Resumen
Se analizó la situación actual de la investigación y la educación en incendios y explosiones en Colombia desde un enfoque de ciencia e ingeniería y se hicieron recomendaciones sobre los campos que deben desarrollarse para crear una estructura investigativa y educativa que respalde los esfuerzos por prevenirlos. Dado el riesgo de incendios y explosiones, la mayoría de los países han propiciado la creación de centros de investigación y educación orientados al desarrollo científico en esta área. En Colombia tal infraestructura tiene un desarrollo apenas incipiente. La revisión de aspectos importantes en incendios y explosiones como el análisis estadístico, la caracterización fisicoquímica de sustancias inflamables, la cinética química, la combustión, la simulación, la radiación térmica, los fenómenos de pirólisis, el smouldering, la formación de hollín y de humo, la caracterización experimental, la evaluación de riesgos, la educación y otros aspectos específicos de las explosiones evidenció que en Colombia existe un buen desarrollo en la aplicación de la combustión y la pirólisis con fines comerciales, pero sin énfasis en incendios y explosiones. En las demás áreas existen antecedentes de investigación específicamente relacionados con este campo que deben reforzarse. Se recomienda la creación de programas curriculares de posgrado en ciencia y tecnología en esta área, así como el aumento de la capacidad experimental para la caracterización de sustancias inflamables, el fortalecimiento de la investigación en ciencias básicas y el desarrollo de habilidades de computación y simulación.
Palabras clave
Citas
Abecassis-Empis, C., Reszka, P., Steinhaus, T., Cowlard, A., Biteau, H., Welch, S., Rein, G., Torero, J. L. (2008). Characterisation of Dalmarnock fire Test One. Experimental Thermal and Fluid Science. 32 (7): 1334-1343.
Aguirre, J., Ordóñez, A., Ordóñez, H. (2017). Low-Cost Fire Alarm System Supported on the Internet of Things. Advances in Computing, p. 257-266.
Aldana, M. C. del R. & Navarrete, N. (2015). Epidemiology of a decade of Pediatric fatal burns in Colombia, South America. Burns: Journal of the International Society for Burn Injuries., 41 (7): 1587-1592.
Amaya-Gómez, R., Dumar, V., Sánchez-Silva, M., Romero, R., Arbeláez, C., Muñoz, F. (2019). Process safety part of the engineering education DNA. Education for Chemical Engineers. 27: 43-53.
ANSYS. (2021). Ansys - Fluent. ANSYS. https://www.ansys.com/products/fluids/ansys-fluent Armenteras-Pascual, D., Retana-lumbreros, J., Molowny-Horas, R., Román-Cuesta, R. M.,
González-Alonso, F., Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology. 151 (3):279-289.
Bain, A. A., Calder, E. S., Cortés, J. A., Cortés, G. P., Loughlin, S. C. (2018). Textural and geochemical constraints on andesitic plug emplacement prior to the 2004–2010 vulcanian explosions at Galeras volcano, Colombia. Bulletin of Volcanology. 81 (1): 1.
BakerRisk. (2018a). SafeSite3G©. BakerRisk. https://www.bakerrisk.com/products/software-tools/safesite/
BakerRisk. (2018b). Computational Fluid Dynamics - BakerRisk. BakerRisk. https://www.bakerrisk.com/services/consequence-risk-analysis/computational-fluid-dynamics/
Berlied, M., Fajardo, E., Mackenzie, A., Tuttle, C. (2010). Designing a fire-testing laboratory for the University of Costa Rica. Worcester Polytechnic Institute. https://web.wpi.edu/Pubs/E-project/Available/E-project-121410-215156/unrestricted/Bomberos_2010IQP_Final_Report.pdf
Bustamante-Rúa, M. O., Daza-Aragón, A. J., Bustamante-Baena, P. (2019). A study of fire propagation in coal seam with numerical simulation of heat transfer and chemical reaction rate in mining field. International Journal of Rock Mechanics and Mining Sciences. 29(6):873-879.
Bustamante-Rúa, M. O., Daza-Aragón, A. J., Bustamante-Baena, P., Osorio-Botero, J. D. (2019). Determinación de la influencia del sodio superficial en la susceptibilidad de los mantos de carbón a combustión espontánea en una mina a cielo abierto. Investigación Innovación en Ingenierías. 7 (1): 60-71.
Bustamante-Rúa, M. O., Daza-Aragón, A. J., Bustamante-Baena, P., Osorio-Botero, J. D. (2019). Statistical analysis to establish an ignition scenario based on extrinsic and intrinsic variables of coal seams that affect spontaneous combustion. International Journal of Mining Science and Technology. 29 (5): 731-737.
Cadena, J. E. & Muñoz, F. G. (2013). The Link between Fire Research and Process Safety: An Evolution from Specific Needs to General Concern. Chemical Engineering Transactions. 31:679-684.
Castro-Marín, W. & Martínez-G, C. P. (1997). Spontaneous combustion in coal massif. Dyna. 123: 43-50.
Centers for Disease Control and Prevention- CDC. (2021). MFIRE 4.0 Enhances Fire Modeling Capabilities. CDC. https://www.cdc.gov/niosh/mining/content/MFIRETechNews.html
COMSOL INC. (2021). COMSOL: Multiphysics Software for Optimizing Designs. COMSOL. https://www.comsol.com/
DNV. (2021). Process hazard analysis software - Phast - DNV. DNV. https://www.dnv.com/software/services/phast/index.html
Drysdale, D. (2011). An Introduction to Fire Dynamics. Wiley. West Sussex, Reino Unido.
Faraday, M. (1861). A Course of Six Lectures on the Chemical History of a Candle: To which is Added a Lecture on Platinum. Harper & Brothers. New York, EE.UU.
Fuentes, R., Molina, J., Blandón, A. (2018). Explosive Parameters for Coal Samples (Antioquia, Colombia). Revista Ingenierías Universidad de Medellín. 17 (33): 19-38.
García-Torrent, J., Fernández-Añez, N., Medic-Pejic, L., Blandón-Montes, A., Molina-Escobar, J. M. (2016). Ignition and explosion parameters of Colombian coals. Journal of Loss Prevention in the Process Industries. 43: 706-713.
Garzón-Serrano, A. Y., Sierra, C. A., Rodríguez-Bejarano, O., Sinuco, D. (2020). Volatile Organic Compounds, Spectral Characterization and Morphology of Ammonium Nitrate Fuel Oil (ANFO) Samples. Journal of Forensic Sciences. 65 (4): 1085-1093.
Gavelli, F. (2021). The effect of barriers on reducing thermal heat fluxes from a hydrocarbon pool fire. Journal of Loss Prevention in the Process Industries. 72: 104554.
GexCon US. (2019). Flacs Software Modules. GexCon Us. https://www.gexcon.com/us/productsservices/FLACS-Software-Modules/25/en
Gheorghe, G. C. (2020). Emergencias mineras mortales en Colombia (2005-2020): investigación con modelo jerárquico de causalidad de 100 eventos. Idrovo Velandia, Alvaro Javier Hernández
Herrera, Gilma Norela (eds.) Maestría en Salud Ocupacional y Ambiental , Universidad delRosario. https://repository.urosario.edu.co/handle/10336/30813
Gheorghe, G. C., Manrique-Hernández, E. F., Idrovo, A. J. (2021). Injuries and fatalities in Colombian mining emergencies (2005 - 2018). medRxiv. 2021.04.04.21254888.
González-Toloza, N. E., Blandón-Rodríguez, A. M., Díaz-Gómez, A. del P., Marcela-Huguett, C., Buitrago-Puentes, A., Forero-González, M. L., Casallas-Bedoya, V. E., Sanabria-Merchán, Y. A., Quijada-Bonilla, H., Prieto-Alvarado, F. E., et al. (2018). Results of the intensified surveillance of injuries caused by pyrotechnic powder. Colombia, 1 December 2017-13 January 2018. Informe Quincenal-Epidemiológico Nacional. 23 (5): 48-58.
Gutiérrez, G. A., Cotes, D. A., Bastidas, M. J. (2018). Estudio de la Combustión Espontánea del Carbón durante el Acopio en la Mina El Hatillo, ubicada en Cesar, Colombia. Información Tecnológica. 29 (6): 287-294.
Llamas, I., Wolfschoon, A., Rodríguez-Reyes, R. E. (2007). Incendio de un tubo endotraqueal durante traqueostomía. Colombian journal of anesthesiology. 35 (1): 75-77.
Magnusson, S. E., Drysdale, D. D., Fitzgerald, R. W., Motevalli, V., Mowrer, F., Quintiere, J., Williamson, R. B., Zalosh, R. G. (1995). A Proposal for a Model Curriculum in Fire Safety Engineering. Fire Safety Journal. 1 (25): 1-88.
Majdalani, A. H., Cadena, J. E., Cowlard, A., Muñoz, F., Torero, J. L. (2016). Experimental characterisation of two fully-developed enclosure fire regimes. Fire Safety Journal. 79: 10-19.
Mariño, O., Muñoz, F., Jahn, W. (2020). Soot production modelling for operational computational fluid dynamics fire simulations. Journal of Fire Sciences. 38 (3): 284-308.
Mariño-Sánchez, O. A. (2016). Implementación de modelos de producción hollín para simulaciones de incendio en FDS. F. Muñoz Giraldo, P. Ortiz, & O. D. López Mejía (eds.) Chemical engineering, Uniandes. https://repositorio.uniandes.edu.co/handle/1992/13253
McGrattan, K., Hostikka, S., Floyd, J., McDermott, R., Vanella, M. (2021, May). FDS-SMV. FDS-SMV Fire Dynamics Simulator (FDS) and Smokeview (SMV). https://pages.nist.gov/fds-smv/
Mena, J., Vera, S., Correal, J. F., López, M. (2012). Assessment of fire reaction and fire resistance of Guadua angustifolia Kunth bamboo. Construction and Building Materials. 27(1): 60-65.
Michelsen, H. A. (2017). Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proceedings of the Combustion Institute. 36 (1): 717-735.
Miranda, D., Betancur, A. M., Gutiérrez, G. (2003). Master Plans, a New Approach for Contingency Planning in the Colombian Oil Industry. International Oil Spill Conference Proceedings. 2003 (1): 1189-1198.
Molina, A., Schefer, R. W., Houf, W. G. (2007). Radiative fraction and optical thickness in largescale hydrogen-jet fires. Proceedings of the Combustion Institute. 31 (2): 2565-2572.
Moreno-Sader, K., Alarcón-Suesca, C., González-Delgado, A. D. (2020). Application of environmental and hazard assessment methodologies towards the sustainable production of crude palm oil in North-Colombia. Sustainable Chemistry and Pharmacy. 15: 100221.
Moya-Forero, D. S. (2013). Numerical study on the interaction of sprinklers and heat vents. B. Merci (ed.) International Master of Science in Fire Safety Engineering, Ghent University. http://www.cervantesvirtual.com/obra/numerical-study-on-the-interaction-of-sprinklersand-heat-vents-858647
Murillo, C., Amín, M., Bardin-Monnier, N., Muñoz, F., Pinilla, A., Ratkovich, N., Torrado, D., Vizcaya, D., Dufaud, O. (2018). Proposal of a new injection nozzle to improve the experimental reproducibility of dust explosion tests. Powder Technology. 328: 54-74.
Murillo, C., Bardin-Monnier, N., Blanchard, C., Funfschilling, D., Muñoz-Giraldo, F., Ratkovich, N., Vizcaya, D., Dufaud, O. (2016). CFD to improve the repeatability and accuracy of dust explosion tests in the 20-liters sphere. Chemical Engineering Transactions. 48: 115-120.
Murillo, C., Dufaud, O., Bardin-Monnier, N., López, O., Muñoz, F., Perrin, L. (2013). Dust explosions: CFD modeling as a tool to characterize the relevant parameters of the dust dispersion. Chemical Engineering Science. 104: 103-116.
Navarrete, N. & Rodríguez, N. (2016). Epidemiologic characteristics of death by burn injury from 2000 to 2009 in Colombia, South America: a population-based study. Burns & Trauma. 4: 8.
Oran, E. S. (2015). Understanding explosions – From catastrophic accidents to creation of the universe. Proceedings of the Combustion Institute. 35 (1): 1-35.
Ortega-Ramos, C. A., Franco-Bonfante, T. M., Blandón-Montes, A., Molina-Escobar, J. M. (2018). Evaluación del riesgo de explosividad del gas metano en minería subterránea de carbón, caso de la cuenca del Sinifaná, Colombia. Revista Boletín de Geología. 40 (1): 83-91.
Perrin, L., Muñoz-Giraldo, F., Dufaud, O., Laurent, A. (2012). Normative barriers improvement through the MADS/MOSAR methodology. Safety Science. 50 (7): 1502-1512.
Pico, P., Ratkovich, N., Muñoz, F., Dufaud, O. (2020a). CFD-DPM and experimental study of the dynamics of wheat starch powder/pyrolysis gases hybrid mixtures in the 20-L Sphere. Powder Technology. 372: 638-658.
Pico, P., Ratkovich, N., Muñoz, F., Dufaud, O. (2020b). Analysis of the explosion behaviour of wheat starch/pyrolysis gases hybrid mixtures through experimentation and CFD-DPM simulations. Powder Technology. 374: 330-347.
Pinilla, A., Amin, M., Murillo, C., Torrado, D., Bardin-Monnier, N., Muñoz, F., Dufaud, O. (2019). CFD Study of the Dust Dispersion in the 20L Explosion Sphere: Influence of the Nozzle Design. Chemical Engineering Transactions. 77: 121-126.
Prichard, S., Larkin, N. S., Ottmar, R., French, N. H. F., Baker, K., Brown, T., Clements, C., Dickinson, M., Hudak, A., Kochanski, A., Linn, R., Liu, Y., Potter, B., Mell, W., Tanzer, D., Urbanski, S., Watts, A. (2019). The Fire and Smoke Model Evaluation Experiment-A Plan for Integrated, Large Fire-Atmosphere Field Campaigns. Atmosphere. 10 (2): 66.
Ramírez-Camacho, J. G., Pastor, E., Casal, J., Amaya-Gómez, R., Muñoz-Giraldo, F. (2015). Analysis of domino effect in pipelines. Journal of Hazardous Materials. 298: 210-220.
Ramírez-Rosas, C. H. & González-Sierra, M. A. (2016). Diagnóstico de la accidentalidad en la pequeña y mediana minería subterránea de la provincia del Sugamuxi. L. A. Lara-González & Y. B. Benavides-Infante (eds.) Escuela de Ingeniería de Minas. https://repositorio.uptc.edu.co/bitstream/001/1610/1/TGT-345.pdf
Romero-Ruiz, M. H. (2011). Influence of land use, climate and topography on the fire regime in the Eastern Savannas of Colombia. K. Tansey & J. C. Berrio (eds.) University of Leicester. https://leicester.figshare.com/articles/thesisInfluence_of_land_use_climate_and_topography_on_the_fire_regime_in_the_Eastern_Savannas_of_Colombia/10102670/1
Salamanca, J., Rodríguez, H., Fernandez, A., Nino-Merchan, J. J., Rojas, V. (2017). Modernisation of the underground coal mining sector in Colombia – a proposal from the academy. Proceedings of the First International Conference on Underground Mining Technology. First International Conference on Underground Mining Technology. https://doi.org/10.36487/acg_rep/1710_42_salamanca
Sapko, M. J., Weiss, E. S., Cashdollar, K. L., Zlochower, I. A. (2000). Experimental mine and laboratory dust explosion research at NIOSH. Journal of Loss Prevention in the Process Industries. 13 (3): 229-242.
Sedano, C. A., López, O. D., Ladino, A., Muñoz, F. (2017). Prediction of a Small-Scale Pool Fire with FireFoam. International Journal of Chemical Engineering. Vol. 2017, 12 pag. Doi:10.1155/2017/4934956
Serrano, J., Pico, P., Amín, M., Pinilla, A., Torrado, D. (2020). Experimental and CFD-DEM study of the dispersion and combustion of wheat starch and carbon-black particles during the standard 20L sphere test. Journal of Loss. https://www.sciencedirect.com/science/article/pii/S0950423019305662
Sierra, C., Pérez, L. D., Garzón, A., Sinuco, D., Hinestroza, J. P. (2020). Detección de minas antipersonal que contienen explosivos tipo ANFO: una revisión. Revista Colombiana de Química. 49 (3): 47-57.
Torrado, D. (2017). Effect of carbon black nanoparticles on the explosion severity of gas mixtures. Universite de Lorraine, Nancy, France (PhD Thesis). http://docnum.univ-lorraine.fr/public/DDOC_T_2017_0199_TORRADO.pdf
Verbeek, A., Debackere, K., Luwel, M., Zimmermann, E. (2002). Measuring progress and evolution in science and technology – I: The multiple uses of bibliometric indicators. International Journal of Management Reviews. 4 (2): 179-211.
Vignes, A., Muñoz, F., Bouillard, J., Dufaud, O., Perrin, L., Laurent, A., Thomas, D. (2012). Risk assessment of the ignitability and explosivity of aluminum nanopowders. Process Safety and Environmental Protection. 90 (4): 304-310.
Vizcaya, D., Pinilla, A., Amín, M., Ratkovich, N., Muñoz, F., Murillo, C., Bardin-Monnier, N., Dufaud, O. (2018). CFD as an approach to understand flammable dust 20 L standard test: Effect of the ignition time on the fluid flow. AIChE Journal. 64 (1): 42-54.
WiKi. (2021, April). FireFoam - OpenFOAMWiki. Transient Solver for Fires and Turbulent Diffusion Flames with Reacting Particle Clouds, Surface Film and Pyrolysis Modelling. https://openfoamwiki.net/index.php/FireFoam
William, C. M. & Martínez G, C. P. (1998). Potential risk of explosions of combustible powder in underground mines of coal. Dyna. 124: 37-53.
Woodrow, M. (2013). Educating engineers for a holistic approach to fire safety. J. Torero (ed.) The University of Edinburgh. https://era.ed.ac.uk/handle/1842/8224
Woodrow, M., Bisby, L., Torero, J. L. (2013). A nascent educational framework for fire safety engineering. Fire Safety Journal. 58: 180-194. https://www.sciencedirect.com/science/article/pii/S0379711213000374
Woodrow, M., Gillen, A. L., Woodrow, R., Torero, J. (2020). Investigating Varied Pedagogical Approaches for Problem-Based Learning in a Fire Safety Engineering Course. International Journal of Engineering Education. 36 (5): 1605-1614.
Xi, X., Torero, J. L., Jahn, W. (2021). Data driven forecast of droplet combustion. Proceedings of the Combustion Institute. 38 (3): 4785-4793.
Zhang, W., Olenick, S. M., Klassen, M. S., Carpenter, D. J., Roby, R. J., Torero, J. L. (2008). A smoke detector activation algorithm for large eddy simulation fire modeling. Fire Safety Journal. 43 (2): 96-107.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales