Upper Pleistocene deposits from the Cauca Valley
PDF

Supplementary Files

Información suplementaria (Español (España))

How to Cite

Jaramillo, C. ., Krigsfeld Shuster, G. ., D. Rojas, C. ., Henao, A., Y. Ojeda, G. ., Caballero, D., … Escobar, J. . (2022). Upper Pleistocene deposits from the Cauca Valley. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(179), 482–495. https://doi.org/10.18257/raccefyn.1666

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Métricas Alternativas


Dimensions

Abstract

The rise of the Isthmus of Panama is one of the major biogeographical events of the Cenozoic. It is a massive natural experiment in biological migrations, as lands formerly separated—South America and Central/North America—became connected. There is, however, a difference in timing between the final closure of the Isthmus (4.2-3.5 Ma) and the onset of the massive mammal migrations (i.e., Great American Biotic Interchange, GABI, 2.7 Ma). This time lag has been brought up to suggest that other factors rather than a land connection were major drivers of the GABI. A large biome change from forest to savanna in Central America and Northwestern South America could have provided the conduit for accelerating the biotic interchange between both continents. This hypothesis has been rarely tested as the Plio-Pleistocene fossil record of those regions has not been sufficiently studied. Gheny K. Shuster discovered a brand new Upper Pleistocene fossil deposit in and under the Cauca River (Southwestern Colombia), one of such possible migration corridors. We conducted a field geophysical and sedimentological study to understand the geometry of the fossil-rich deposits, dated them using carbon isotopes (C14), and assessed the type of biome (savanna versus forest) that dominated the region by looking at pollen samples. We found that the conglomerates accumulated in lenticular bodies, perpendicular to the modern course of the Cauca River during the Late Pleistocene in alluvial fan settings. The vegetation corresponds to a tropical dry forest and there is no evidence of extensive savannas. The Cauca River deposits could become a relevant site for the Neotropical Pleistocene.

https://doi.org/10.18257/raccefyn.1666

Keywords

Quaternary | South America | Great American Biotic Interchange | Megafauna | Biodiversity
PDF

References

Bacon, C. D., Molnar, P., Antonelli, A., Crawford, A. J., Montes, C., Vallejo-Pareja, M. C. (2016). Quaternary glaciation and the Great American Biotic Interchange. Geology, 44(5), 375-378. https://doi.org/10.1130/G37624.1

Bacon, C. D., Mora, A., Wagner, W. L., Jaramillo, C. A. (2013). Testing geological models of evolution of the Isthmus of Panama in a phylogenetic framework. Botanical Journal of the Linnean Society, 171, 287-300. https://doi.org/10.1111/j.1095-8339.2012.01281.x.

Bacon, C. D., Silvestro, D., Jaramillo, C. A., Smith, B. T., Chakrabarty, P., Antonelli, A. (2015). Biological Evidence Supports an Early and Complex Emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences, 112, 6110-6115.

Berrio, J. C., Hooghiemstra, H., Marchant, R., & Rangel, A. (2002). Late-glacial and Holocene history of the dry forest area in the south Colombian Cauca Valley. Journal of Quaternary Science, 17, 667-682.

Carrillo, J. D., Faurby, S., Silvestro, D., Zizka, A., Jaramillo, C., Bacon, C. D., Antonelli, A. (2020). Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange. Proceedings of the National Academy of Sciences, 117, 26281-26287. https://doi.org/10.1073/pnas.2009397117

Carrillo, J. D., Forasiepi, A., Jaramillo, C., Sánchez-Villagra, M. R. (2015). Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Frontiers in Genetics, 5, 451. https://doi.org/10.3389/ fgene.2014.00451

Corporación Autónoma Regional del Valle del Cauca-CVC. (2016). Modelo Digital de Terreno y Modelo Digital de superficie del proyecto Corredor de Conservación y uso sostenible del sistema del Río Cauca.

Escobar, J., Hodell, D. A., Brenner, M., Curtis, J. H., Gilli, A., Mueller, A. D., . . . Guilderson, T. P. (2012). A 43-ka record of paleoenvironmental change in the Central American lowlands inferred from stable isotopes of lacustrine ostracods. Quaternary Science Reviews, 37, 92-104.

Faegri, K., Iversen, J. (1989). Textbook of Pollen Analysis. New York: John Wiley and Sons. p?

González-Carranza, Z., Berrío, J. C., Hooghiemstra, H., Duivenvoorden, J. F., Behling, H. (2008). Changes of seasonally dry forest in the Colombian Patía Valley during the early and middle Holocene and the development of a dry climatic record for the northernmost Andes. Review of Palaeobotany and Palynology, 152(1), 1-10. https://doi.org/10.1016/j.revpalbo.2008.03.005

Goring, S. J., Simpson, G. L., Marsicek, J. P., Ram, K., Sosalla, L. (2019). Package ‘Neotoma’ (Version https://github.com/ropensci/neotoma).

Hill, M. O., Gauch, H. G. (1980). Detrended correspondence analysis, an improved ordination technique. Vegetatio, 42, 47-58.

Hodell, D. A., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J. H., Gilli, A., . . . Kutterolf, S. (2008). An 85-ka Record of Climate Change in lowland Central America. Quaternary Science Reviews, 27, 1152-1165.

Hooghiemstra, H. (1984). Vegetational and Climatic History of the High Plain of Bogota, Colombia: A Continuous Record of the Last 3.5 Million Years. Verlaga: J. Cramer.

Hooghiemstra, H., Van der Hammen, T. (1998). Neogene and Quaternary development of the neotropical rain forest: The forest refugia hypothesis, and a literature overview. Earth-Science Reviews, 44, 147-183.

Howard, J. L. (1993). The statistics of counting clasts in rudites: a review, with examples from the upper Palaeogene of southern California, USA. Sedimentology, 40, 157-174. https://doi.org/10.1111/j.1365-3091.1993.tb01759.x

Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters Ecological Monographs, 54, 187-211.

Jaramillo, C. (2018). Evolution of the Isthmus of Panama: biological, paleoceanographic, and paleoclimatological implications. In C. Hoorn & A. Antonelli (Eds.), Mountains, Climate and Biodiversity (pp. 323-338). Oxford: John Wiley & Sons.

Jaramillo, C., Romero, M., Ochoa, D., Silva, S., Bedoya, G., Paez, A., Pardo, A. (2009). Palinología de la formación la Paila: Mioceno Superior de la cuenca del Valle del Cauca. Paper presented at the XII Congreso Colombiano de Geología, Sogamoso.

Jaramillo, C. & Rueda, M. (2021). A Morphological Electronic Database of Cretaceous-Tertiary Fossil Pollen and Spores from Northern South America V. 2012-2021. Retrieved from http://biogeodb.stri.si.edu/jaramillo/palynomorph/ from the Smithsonian Tropical Research Institute http://biogeodb.stri.si.edu/jaramillo/palynomorph/

Juggins, S. (2015). rioja: Analysis of Quaternary Science Data (Version 0.9-5 ). Retrieved from https://cran.r-project.org/web/packages/rioja/index.html

Leigh, E. G., O’Dea, A., Vermeij, G. J. (2014). Historical biogeography of the Isthmus of Panama. Biological Reviews, 89, 148-172.

Marchant, R., Boom, A., Behling, H., Hooghiemstra, H., Melief, B., Geel, B. V., . . . Wille, M. (2004). Colombian vegetation at the Last Glacial Maximum: a comparison of model‐and pollen‐based biome reconstructions. Journal of Quaternary Science, 19, 721-732.

Molnar, P. (2008). Closing of the Central American Seaway and the Ice Age: A critical review. Paleoceanography, 23(1), 1-A2201. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgidb=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16028557017787850148related:pN1WS6_fcN4J

Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., . . . Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science, 348, 226-229.

Moreno, E., Vergara, D., Jaramillo, C. (2014). Las colecciones palinológicas del Instituto Smithsonian de Investigaciones Tropicales (STRI), Panamá. Boletín de la Asociación LAtinoamericana de Paleobotánica y Palinología, 14, 207-222.

Nivia, A. (2001). Mapa Geológico del Departamento del Valle del Cauca. Bogotá: INGEOMINAS.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, R. G., O’Hara, B., Simpson, G. L., ... Wagner, H. (2010). Community Ecology Package (Version R package version 1.17-0): R for Statistical Computing. http://CRAN.Rproject.org/package=vegan

Pelegrin, J. S., Quijano, S. A., Belalcázar, L., Benavides-Herrán, A., Escobar-Flórez, S., Mothé, D., Avilla, L. d. S. (2022). Report on mandibular remains of Notiomastodon platensis (Mammalia, Proboscidea) and review of its fossil record in the paleoecological context of Valle del Cauca, Colombia. Revista Brasileira de Paleontologia, 25(1), 90-100. https://doi. org/10.4072/rbp.2022.1.07

Pizano, C., Cabrera, M., García, H. (2014). Bosque seco tropical en Colombia; generalidades y contexto. Bogota: Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt.

R-Development-Core-Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Ramírez-Padilla, B. R., Macías-Pinto, D. J., Varona-Balcazar, G. (2015). Lista comentada de plantas vasculares del valle seco del río Patía, suroccidente de Colombia. Biota Colombiana, 16, 1-49.

Redpath, B. B. (1973). Seismic Refraction Exploration for Engineering Site Investigations. Vicksbury, MS

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., . . . van der Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(4), 1869-1887. https://doi.org/10.2458/azu_js_rc.55.16947

Roubik, D. W., Moreno, J. E. (1991). Pollen and Spores of Barro Colorado Island (Vol. 36). St. Louis: Missouri Botanical Garden.

Simpson, G. G. (1983). Splendid Isolation: The Curious History of South American Mammals. New Heaven: Yale University Press.

Smith, B. T., Amei, A., Klicka, J. (2012). Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. Proceedings of the Royal Society B: Biological Sciences, 279, 3520-3526.

Tucker, M. E. (2001). Sedimentary petrology. An introduction to the origin of sedimentary rocks. West Sussex, England: Wiley-Blackwell.

Vrba, E. S. (1992). Mammals as a Key to Evolutionary Theory. Journal of Mammalogy, 73, 1-28.

Webb, S. D. (1976). Mammalian Faunal Dynamics of the Great American Interchange. Paleobiology, 2, 220-234.

Webb, S. D. (1978). A history of savanna vertebrates in the New World. Part II: South America and the great interchange. Annual Review of Ecology and Systematics, 9, 393-426.

Webb, S. D. (2006). The great American biotic interchange: patterns and processes. Annals of the issouri Botanical Garden, 93, 245-257.

Woodburne, M. O. (2010). The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens. Journal of Mammalian Evolution, 17, 245-264.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales