Fenómenos interfaciales en multicapas y superredes magnéticas: revisión y perspectivas
PDF

Cómo citar

Gómez, M. E., Marín, L., Sánchez, C. W., & Ramírez, J. G. (2023). Fenómenos interfaciales en multicapas y superredes magnéticas: revisión y perspectivas. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(182), 101–121. https://doi.org/10.18257/raccefyn.1868

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Métricas Alternativas


Dimensions

Resumen

En las últimas ocho décadas la comprensión de los mecanismos físicos que ocurren en la superficie límite entre dos materiales diferentes ha estado en constante evolución. Su interés radica en la ruptura de la simetría cristalina y la reducción de la coordinación atómica, las cuales producen modificaciones en el tipo y la ocupación orbital de los átomos en la interfaz. El estudio de los fenómenos interfaciales dio inicio a la ciencia de superficies, cuyo avance ha sido significativo en la medida en que aparecen nuevas y sofisticadas herramientas, tanto para la fabricación controlada de interfaces, como para la caracterización en el rango de la monocapa atómica. El interés se ha centrado no solo en el estímulo científico si no en el tecnológico, sobre todo en el contexto de los dispositivos electrónicos y, más recientemente, en una amplia gama de aplicaciones interdisciplinarias, como las biointerfaces, los detectores y actuadores ultrasensibles de última generación y el mejoramiento de las propiedades tribológicas. En este trabajo presentamos, primero, un contexto histórico de los diferentes fenómenos interfaciales que han ido surgiendo y su influencia en las propiedades que exhiben donde quiera que hay una interfaz, como en el caso de junturas, multicapas y heteroestructuras. Presentamos, asimismo, los avances en los sistemas de superredes magnéticas de importancia en el mejoramiento de la densidad de información de los discos duros, y discutimos sobre los estados interfaciales electrónicos y magnéticos y las nuevas funcionalidades en las interfaces de heterojunturas basadas en óxidos complejos. Por último, resaltamos algunos avances y perspectivas en el campo de la ciencia de superficies.

https://doi.org/10.18257/raccefyn.1868

Palabras clave

Efectos interfaciales | Óxidos complejos | Magnetorresistencia gigante | Interacción de intercambio entre capas | Polarización de intercambio | Materiales multiferroicos
PDF

Citas

Allara, D.L. (2005). A perspective on surfaces and interfaces. Nature, 437, 638-639

Asher, E., Rieder, H., Schmid, H., Stossel, H. (1966). Some properties of ferromagnetoelectric Nickel‐Iodine Boracite, Ni3B7O13I. Journal of Applied Physics, 37, 1404

Baibich, M.N., Broto, J.M., Fert, A., van Dau, F.N., Petroff, F., Ettiene, P., Creuzet, G., Friederich, A., Chazelas, J. (1988). Giant magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61, 2742.

Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39, 4828.

Blachowicz, T., Ehrman, A. (2021). Exchange bias in Thin Films—An Update. Coatings, 11, 122. Bowden, F. P., Tabor, D. (1951). The Friction and Lubrication of Solids (1era ed.). New York: Oxford University Press.

Bruno, P., Chappert, C. (1992). Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Physical Review B, 46, 261.

Buscaglia, V., Buscaglia, M.T., Canu, G. (2020). BaTiO3-based ceramics: fundamentals, properties and applications. En B. W. Wessels, Encyclopedia of Materials: Technical ceramics and glasses (pág. 1). Elsevier.

Caicedo, J.M., Zapata, J.A., Gómez, M.E., Prieto, P. (2008). Magnetoelectric coefficient in BiFeO3 compounds. Journal of Applied Physics, 103, 07E306.

Campillo, G., Gómez, M.E., Berger, A., Hoffmann, A., Escudero, R., Prieto, P. (2006). Influence of ferromagnetic thickness on structural and magnetic properties of exchange-biased manganite superlattices. Journal of Applied Physics, 99, 08C106.

Campillo, G., Hoffmann, A., Gómez, M.E., Prieto, P. (2005). Exchange bias and magnetic structure in modulation-doped manganite superlattices. Journal of Applied Physics, 97, 10K104.

Carcia, P.F., Meinhaldt, A.D., Sunna, A. (1985). Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Applied Physics Letters, 47, 178.

Cardona, A., Arango, I.C., Gómez, M.F., Domínguez, C., Trastoy, J., Urban, C., Sulekar, S., Nino, J. C., Schuller, I.K., Gómez, M.E., Ramírez, J.G. (2019). Resistive switching in multiferroic BiFeO3 Films: Ferroelectricity vs vacancy migration. Solid State Communications, 288, 38.

Carranza-Celis, D., Cardona, A., Narváez, J., Moscoso, O., Muraca, D., Knobel, M., Ornelas- Soto, N., Reiber, A., Ramírez, J.G. (2019). Control of multiferroic properties in BiFeO3 nanoparticles. Scientific Reports, 9, 3182.

Chen, A., Su, Q., Han, H., Enriquez, E., Jia, Q. (2019). Metal Oxide Nanocomposites: A Perspective from Strain, Defect, and Interface. Advanced Materials, 31, 1803241.

Chu, J., Wang, Y., Wang, X., Hu, K., Rao, G., Gong, C., Wu, C., Hong, H., Liu, K., Gao, C., Xiong, J. (2021). 2D Polarized Materials: Ferromagnetic, Ferrovalley, Ferroelectric Materials, and Related Heterostructures. Advanced Materials, 33, 2004469.

Coll, M., Fontcuberta, J., Althammer, M., Bibes, M., Boschker, H., Calleja, A., Cheng, G., Cuoco, M., Dittmann, R., Dkhil, B., El Baggari, I., Fanciulli, M., Fina, I., Fortunato, E., Frontera, C., Fujita, S., Garcia, V., Goennenwein, S.T.B., Granqvist, C.G., Grollier, J. (2019). Toward oxide electronics: A road map. Applied Surface Science, 482, 1.

Cyrille, M.C., Kim, S., Gómez, M. E., Santamaria, J., Krishnan, K. M., Schuller, I. K. (2000). Enhancement of perpendicular and parallel giant magnetoresistance with the number of bilayers in Fe/Cr superlattices. Physical Review B, 62, 3361.

Khomskii, D. (2009). Classifying multiferroics: Mechanisms and effects. Physics, 2, 20.

Dagotto, E. (2005). Complexity in Strongly Correlated Electronic Systems. Science, 309, 257.

Dagotto, E., Hotta, T., Moreo, A. (2001). Colossal magnetoresistant materials: the key role of phase separation. Physics Reports, 344, 1.

De la Venta, J., Wang, S., Ramírez, J. G., Erekhinsky, M., Valmianaski, I., Schuller, I. K. (2014). Coupling of magnetism and structural phase transitions by interfacial strain. Journal of Materials Research, 29, 2353.

Del Valle, J., Ramírez, J.G., Rosenberg, M., Schuller, I.K. (2018). Challenges in materials and devices for Resistive-Switching-based Neuromorphic Computing. Journal of Applied Physics, Special Topic: New Physics and Materials for Neuromorphic, 124, 211101.

Domínguez, C., Ordóñez, J.E., Gómez, M.E. (2012). Interfacial coupling in multiferroic BiFeO3 and ferromagnetic La2/3Sr1/3MnO3 thin films. Journal of Physics: Conference Series, 935, 012029.

Duke, C.B. (1969). Tunneling in Solids. New York: Academic Press.

Duke, C.B. (1996). Semiconductor Surface Reconstruction: The Structural Chemistry of Two- Dimensional Surface Compounds. Chemical Review, 96, 1237-1259.

Duke, C.B. (2003). The birth and evolution of surface science: Child of the union of science and technology. Proceedings of National Academy of Science, 100, 3858.

Dzyaloshinskii, I. E. (1959). On the Magneto-Electrical Effect in Antiferromagnets. Soviet Physics Journal of Experimental and Theoretical Physics, 10, 628.

Egerton, R.F. (2009). Electron energy-loss spectroscopy in the TEM. Reports on Progress in Physics, 72, 016502.

Esaki, L., Laibowitz, R., Stiles, P.J. (1971). Polar Switch. IBM. Technical Disclosure Bulletin, 13, 2161.

Feenstra, R.M. (1994). Scanning tunneling spectroscopy. Surface Science, 299/300, 965-979.

Fullerton, E.E. & Schuller, I.K. (2007). The 2007 Nobel Prize in physics: Magnetism and transport at the nanoscale. American Chemical Society Nano, 1, 384.

Fullerton, E.E., Schuller, I.K.,Vanderstraeten, H., Bruynseraede, Y. (1992). Structural refinement of superlattices from x-ray diffraction. Physical Review B, 45, 9292.

Gallego, J.M., Lederman, D., Moran, T.J., Schuller, I.K. (1994). Large magnetoresistance with low saturation fields in magnetic/magnetic superlattices. Applied Physics Letters, 64, 2590.

García, V., Bibes, M. (2014). Ferroelectric tunnel junctions for information storage and processing. Nature Communications, 5, 4289.

García, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N. D., Barthelemy, A., Bibes, M. (2009). Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 460, 81.

Gibbs, A.S., Knight, K.S., Lightfoot, P. (2011). High-temperature phase transitions of hexagonal YMnO3. Physical Review B, 83, 094111.

Goldschmidt, V. (1926). Die Gesetze der Krystallochemie. Die Naturwissenschaften, 14, 477.

Gómez, M.E., Campillo, G., Ramírez, J.G., Hoffmann, A., Guimpel, J. (2007). Detailed magnetic and structural properties of exchange-biased La1-xCaxMnO3. Physica status solidi (c), 4, 4181.

Guo, H., Saghayezhian, M., Wang, Z., Zhu, Y., Zhang, J., Plummer, W. (2020). Visualizing quantum phenomena at complex oxide interfaces: an atomic view from scanning transmission electron microscopy. Frontiers of Physics, 15, 13401.

Hoffmann, A., May, S.J., Te Velthuis, S.G., Park, S., Fitzsimmons, M.R., Campillo, G., Gómez, M.E. (2009). Magnetic depth profile of a modulation-doped La1− xCaxMnO3 exchangebiased system. Physical Review B, 80, 052403.

Ikeda, S., Hayakawa, J., Lee, Y.M., Sasaki, R., Meguro, T., Matsukura, F., Ohno, H. (2005). Dependence of tunnel magnetoresistance in MgO based magnetic tunnel junctions on Ar pressure during MgO sputtering. Japanische Journal of Applied Physics, 44, 1442.

Inoue, I.H. & Rozenberg, M. J. (2008). Taming the Mott Transition for a Novel Mott Transistor. Advanced Functional Materials, 18, 2289.

Jonker, G.H., van Santen, J.H. (1950). Ferromagnetic compounds of manganese with perovskite structure. Physica, 16, 337.

Kasuya, T. (1956). A theory of metallic ferro-and antiferromagnetism on Zener’s model. Progress of Theoretical Phyics, 16, 45.

Kroemer, H. (2001). Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks. Reviews of Modern Physics, 73, 783.

Landau, L.D., Lifshitz, E.M. (1959). Electrodynamics of continuous media. Moscú: Fizmatgiz.

Lebeuglea, D., Colson, D., Forget, A., Viret, M. (2007). Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Applied Physics Letters, 91, 022907.

Li, Y., Chen, C., Li, W., Mao, X., Liu, H., Xiang, J., Nie, A., Liu, Z., Zhu, W., Zeng, H. (2020). Orthogonal Electric Control of the Out-Of-Plane Field-Effect in 2D Ferroelectric α-In2Se3. Advanced Electronic Materials, 6, 2000061.

Maksymov, I.S. (2016). Magneto-plasmonic nanoantennas: Basics and applications (Review). Reviews in Physics, 51, 36.

Marín, L., Ramírez, J.G., Gómez, M.E. (2010). On the magnetic properties of F/AF Ca-doped lanthanum manganite bilayers: Approach to interface effects. Journal of Physics: Conference Series, 200, 07206.

Meiklejohn, W.H., Bean, C.P. (1956). New Magnetic Anisotropy. Physical Review, 102, 1413. Meunier, V., Souza-Filho, A.G., Barros, E.B., Dresselhaus, M.S. (2016). Physical properties of low-dimensional sp2-based carbon nanostructures. Review of Modern Physics, 88, 025005.

Moodera, S., Kinder, L.R., Wong, T.M., Meservey, R. (1995). Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Physical Review Letters, 74, 3273.

Moreo, A., Yunoki, S., Dagotto, E. (1999). Phase Separation Scenario for Manganese Oxides and Related Materials. Science, 283, 2034.

Moutis, N., Christides, C., Panagiotopoulos, I., Niarchos, D. (2001). Exchange-coupling properties of La1−xCaxMnO3ferromagnetic/antiferromagnetic multilayers. Physical Review B, 64,094429.

Nogues, J., Schuller, I.K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192, 203.

Ordóñez, J.E., Gómez, M.E., Lopera, W. (2019). Effect of induced strain by substrate orientation on magnetic properties in BaTiO3/La0.7Sr0.3MnO3 bilayers. Materials Today: Proceedings, 14, 62.

Ordóñez, J.E., Marín, L., Rodríguez, L.A., Algarabel, P.A., Pardo, J.A., Guzmán, R., Morellon, L., Magen, C., Snoeck, E., Gómez, M.E., Ibarra, M.R. (2020). Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bila yer. Beilstein Journal of Nanotechnology, 11, 651.

Ordóñez, J.E., Narváez, J., Gómez, M.E., Lopera, W. (2012). Angular dependence of the magnetoelectric coefficient on multiferroic BiFeO3 thin film. Revista Mexicana de Fısica, S58, 97.

Pennycook, S.J. (2012). Seeing the atoms more clearly: STEM imaging from the Crewe era to today. Ultramicroscopy, 123, 28.

Prieto, P., Gómez, M. E., Campillo, G., Berger, A., Baca, E., Escudero, R., Morales, F., Guimpel, J., Haberkorn, N. (2004). Exchange-coupling effect and magnetotransport properties in epitaxial La2/3Ca1/3MnO3/ La1/3Ca2/3MnO3 superlattices. Physica status solidi (a), 201, 2343.

Prieto, P., Marín, L., Díez, S.M., Ramírez, J.G., Gómez, M.E. (2012). Influence of Layer Thickness Ratio on Magnetic Properties in F-La2/3Ca1/3MnO3/AF-La1/3Ca2/3MnO3 Bilayers. Journal of Superconductivity and Novel Magnetism, 25, 2193.

Quate, C.F. (1994). The AFM as a tool for surface imaging. Surface Science, 299/300, 980-995.

Radu, F., Zabel, H. (2007). Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. En Magnetic Heterostructures (Vol. 227, págs. 97-184). Springer Tracts in Modern Physics Book Series.

Ramesh, R. (2014). Electric field control of ferromagnetism using multi-ferroics: the bismuth ferrite story. Philosophical Transactions of the Royal Society A, 372, 20120437.

Ramírez, J.G., Cortés, A., Lopera, W., Gómez, M.E., Prieto, P. (2006). Scaling Laws in PZT Thin Films Grown on Si (001) and Nb-Doped SrTiO3(001) Substrates. Brazilian Journal of Physics, 36, 1066.

Ramírez, J.G., Pérez, F., Gómez, M.E., Prieto, P. (2004). Statistical study of AFM images on manganite thin films. Physica Status Solidi C, 1, S13.

Rizal, C., Moa, B., Niraula, B. (2016). Ferromagnetic Multilayers: Magnetoresistance, Magnetic Anisotropy, and Beyond. Magnetochemistry, 2, 22.

Ruderman, M.A., Kittel, C. (1954). Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Physical Review 96, 99.

Samal, R., Sanyal, G., Chakraborty, B., Rout, C.S. (2021). Two-dimensional transition metal phosphorous trichalcogenides (MPX3): a review on emerging trends, current state and future perspectives. Journal of Materials Chemistry A, 9, 2560.

Santamaróa, J., Gómez, M.E., Cyrille, M.C., Leighton, C., Krishnan, K.M., Schuller, I. K. (2001). Interfacially dominated giant magnetoresistance in Fe/Cr superlattices. Physical Review B, 65, 012412.

Schmid, H. (1973). On a magnetoelectric classification of materials. International Journal of Magnetics and Electromagnetism, 4, 337.

Schmid, H. (1994). Multi-ferroic magnetoelectrics. Ferroelectrics, 162, 317.

Schuller, I.K. (1980). New Class of Layered Materials. Physical Review Letters 44, 1597.

Schuller, I.K. (1994). Recent issues in metallic superlattices. Solid State Communications, 92, 141.

Schuller, I.K., Kim, S., Leighton, C. (1999). Magnetic superlattices and multilayers. Journal of Magnetism and Magnetic Materials, 200, 571.

Shebanov, L.A. (1981). X-ray temperature study of crystallographic characteristics of Barium Titanate. Physica Status Solidi (a), 65, 321.

Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S. (2008). The missing memristor found. Nature, 453, 80.

Tamerler, C. (2015). Surfaces and Their Interfaces Meet Biology at the Bio-interface. The Member Journal of The Minerals, Metals & Materials Society JOM 67, 2480

Thomson, W. (1857). On the electrodynamic qualities of metals: Effects of magnetization on the electric conductivity of Nickel and Iron. Proceedings of the Royal Society of London, 8, 546.

Tokura, Y. (2006). Critical features of colossal magnetoresistive manganites. Reports on Progress in Physics, 69, 797. Tokura, Y., Tomioka, Y. (1999). Colossal magnetoresistive manganites. Journal of Magnetism and Magnetic Materials, 200, 1.

Tsymbal, E.Y., Gruverman, A., García, V., Bibes, M., Barthelemy, A. (2012). Ferroelectric and multiferroic tunnel junctions. Materials Research Society Bulletin, 37, 138.

Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E., Pennycook, S.J. (2005). Materials characterization in the aberration-corrected scanning transmission electron microscope. Annual Review of Materials Research, 35, 539.

Vaz, C.A. (2012). Electric field control of magnetism in multiferroic heterostructures. Journal of Physics: Condensed. Matter, 24, 333201.

Vaz, C.A., Shin, Y. J., Bibes, M., Rabe, K. M., Walker, F.J., Ahn, C.H. (2021). Epitaxial ferroelectric interfacial devices. Applied Physical Review, 8, 041308.

Vaz, C.A., Walker, F.J., Ahn, C.H., Ismail-Beigi, S. (2015). Intrinsic interfacial phenomena in manganite heterostructures. Journal of Physics: Condensed Matter, 27, 123001.

Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spalding, N.A., Rabe, K. M., Wuttig, M., Ramesh, R. (2003). Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 299, 1719.

Xia, D., Li, Q., Zhang, S., Dong, M. (2021). Editorial: Material Surfaces and Interfaces at the Nanoscale: From Theory to Application. Frontiers in Chemistry, 9, 656661.

Young, R., Ward, J., Scire, F. (1971). Observation of Metal-Vacuum-Metal Tunneling, Field Emission, and the Transition Region. Physical Review Letters, 27, 922-924.

Zapata, J., Narváez, J., Lopera, W., Mendoza, G.A., Prieto, P. (2008). Electric and Magnetic Properties of Multiferroic BiFeO3 and YMnO3 Thin Films. IEEE Transactions on Magnetics, 44, 2895.

Zener, C. (1951). Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review, 82, 403.

Zhao, W., Ribeiro, R. M., Eda, G. (2015). Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Accounts on Chemical Research, 48, 91.

Zheng, H., Straub, F., Zhan, Q., Yang, P.L., Hsieh, W.K., Zavaliche, F., Chu, Y.H., Dahmen, U., Ramesh, R. (2006). Self-Assembled Growth of BiFeO3–CoFe2O4 Nanostructures. Advanced Materials, 18, 2747.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales