Construction and demolition waste as raw material for concrete and construction elements obtained through alkaline activation
PDF (Español (España))

How to Cite

Mejía-de-Gutiérrez, R., Robayo-Salazar, R., & Valencia-Saavedra, W. (2023). Construction and demolition waste as raw material for concrete and construction elements obtained through alkaline activation. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(184), 505–519. https://doi.org/10.18257/raccefyn.1892

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Portland cement (OPC) has been commonly used in concrete production. However, it has been questioned for its excessive consumption of natural resources and energy, and the high emissions generated in its production process. On the other hand, the construction sector also contributes to the environmental impact by generating construction and demolition waste (CDW) that is not used. This has motivated the development of alternative cements with a lower carbon footprint and the reuse of CDW to comply with the Sustainable Development Goals (SDG) and the principles of Circular Economy. Here we demonstrated the feasibility of producing alkali-activated hybrid concrete using a mixture of powders from CDW grinding. As alkaline activators, we used a solution of sodium hydroxide and silicate (NaOH+Na2SiO3) and sodium sulfate (Na2SO4). The OPC proportion was 10% and 30%, respectively. For an integral CDW use, we used 100% recycled aggregates. The designed concrete had the mechanical strength required by the NSR-10 Seismic Resistant Standard to be classified as structural. Additionally, its global warming potential (GWP) was 68% lower than that of an OPC-based concrete with the same specification. This concrete was used in the production of precast elements such as solid blocks, vertical perforation blocks, and paving stones that met the specifications required by the Colombian technical standards.

https://doi.org/10.18257/raccefyn.1892

Keywords

Construction and demolition waste | Alkaline activation | Hybrid cements | Concrete | Blocks | Pavers
PDF (Español (España))

References

Adesina, A. & Rodrigue Kaze, C. (2021). Physico-mechanical and microstructural properties of sodium sulfate activated materials: A review. Construction and Building Materials, 295, 123668. https://doi.org/10.1016/j.conbuildmat.2021.123668.

Akhtar, A., Sarmah, A.K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal Cleaner Production, 186, 262– 281. https://doi.org/10.1016/j.jclepro.2018.03.085.

Allahverdi, A. (2013). Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. In F. Pacheco Torgal, V. Tam, J.A. Labrincha, Y. Ding y J. de Brito (Eds.), Handbook of recycled concrete and demolition waste, Woodhead Publishing Series.

Alsalman, A., Assi, L.N., Kareem, R.S., Carter, K., Ziehl, P. (2021). Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems, 3, 100047. https://doi.org/10.1016/j.cesys.2021.100047.

American Concrete Institute. (2019). ACI 318, Requisitos del código de construcción para concreto estructural. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51687637.

Amran, Y.H.M., Alyousef, R., Alabduljabbar, H., El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. doi:https://doi.org/10.1016/j.jclepro.2019.119679.

Caneda-Martínez, L., Monasterio, M., Moreno-Juez, J., Martínez-Ramírez, S., García, R., Frías, M. (2021). Behaviour and Properties of Eco-Cement Pastes Elaborated with Recycled Concrete Powder from Construction and Demolition Wastes. Materials, 14(5), 1299. https://doi.org/10.3390/ma14051299.

Coaffee, J. (2008). Risk, resilience, and environmentally sustainable cities. Energy Policy, 36(12), 4633-4638. https://doi.org/10.1016/j.enpol.2008.09.048.

CONAMA. (2002). Resolução CONAMA No 307 Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil. https://cetesb.sp.gov.br/licenciamento/documentos/2002_Res_CONAMA_307.pdf.

CVC-Univalle. (2022). Convenio Interadministrativo 0146-2020, Cali, Colombia.

Dadsetan, S., Siad, H., Lachemi, M., Sahmaran, M. (2019). Construction and demolition waste in geopolymer concrete technology: a review. Magazine of Concrete Research, 71(23), 1232-1252. https://doi.org/10.1680/jmacr.18.00307.

Deloitte. (2015). Screening template for Construction and Demolition Waste management in The Netherlands.https://ec.europa.eu/environment/pdf/waste/studies/deliverables/CDW_Czech%20Republic_Factsheet_Final.pdf.

Deloitte. (2015). Screening template for Construction and Demolition Waste management in The Netherlands. https://ec.europa.eu/environment/pdf/waste/studies/deliverables/CDW_The%20Netherlands_Factsheet_Final.pdf.

Departamento Nacional de Planeación. (2016). Documento CONPES 3874, Política nacional para la gestión integral de residuos sólidos. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf

Deutsches Institut fur Normung E.V. (2017). DIN EN 4226-101/102. Recycled Aggregates for concrete in accordance with DIN EN 12620. https://global.ihs.com/doc_detail.cfm?document_name=DIN%204226%2D102&item_s_key=00728457

Djobo, J.N.Y., Tchakouté, H.K., Ranjbar, N., Elimbi, A., Tchadjié, L.N., Njopwouo, D. (2016).Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash:Effect of Synthesis Conditions. Journal of American Ceramic Society, 99, 3159-3166. https://doi.org/10.1111/jace.14332

European Commission. (2016). Construction and demolition waste (CDW). https://environment.ec.europa.eu/topics/waste-and-recycling/construction-and-demolition-waste_en#overview

García-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D.E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO– Al2O3–SiO2–H2O. Cement and Concrete Research, 41, 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.

García-Lodeiro, I., Maltseva, O., Palomo, A., Fernández-Jiménez, A. (2012). Hybrid alkaline cements. Part I: Fundamentals. Romanian Journal of Materials, 42(4), 330-335.

García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A. (2013). Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cement and Concrete Research, 52, 112-122. https://doi.org/10.1016/j.cemconres.2013.03.022.

García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A. (2018). Hybrid alkaline cements: Bentonite-OPC binders. Minerals, 8, 137. https://doi.org/10.3390/min8040137.

Gobierno de España. (2008). Real Decreto 105/2008 por el cual se regula la producción y gestión de los residuos de construcción y demolición. https://www.boe.es/buscar/act.php?id=BOE-A-2008-2486.

Gobierno de España. (2011). Ley 22/2011, Residuos y Suelos Contaminados. https://www.boe.es/buscar/pdf/2011/BOE-A-2011-13046-consolidado.pdf.

Habert, G., D’Espinose De Lacaillerie, J.B., Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238, https://doi.org/10.1016/j.jclepro.2011.03.012.

Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.

ICONTEC. (1997). NTC 4026, Unidades (bloques y ladrillos de concreto), para mampostería estructural. https://tienda.icontec.org/gp-ingenieria-civil-y-arquitectura-unidades-bloques-yladrillos-de-concreto-para-mamposteria-estructural-ntc4026-1997.html.

ICONTEC. (2018). NTC 2017, Adoquines de concreto para pavimentos. https://tienda.icontec.org/gp-adoquines-de-concreto-para-pavimentos-ntc2017-2018.html.

ICONTEC. (2021). NTC 6421, Agregados gruesos reciclados para uso en el concreto hidráulico.https://tienda.icontec.org/gp-agregados-gruesos-reciclados-para-uso-en-el-concretohidraulico-ntc6421-2021.html.

Kim Y.J., Choi, Y.W. (2012). Utilization of waste concrete powder as a substitution material for cement. Construction and Building Materials, 30, 500-504. https://doi.org/10.1016/j.conbuildmat.2011.11.042.

Komkova, A., Habert, G. (2023). Environmental impact assessment of alkali-activated materials: Examining impacts of variability in constituent production processes and transportation. Construction and Building Materials, 363, 129032. https://doi.org/10.1016/j.conbuildmat.2022.129032.

Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368-376. https://doi.org/10.1016/j.apt.2014.11.012.

Ministerio de Ambiente y Desarrollo Sostenible - MADS. (2010). Reglamento Colombiano de Construcción Sismo-Resistente (NSR-10). https://nuevalegislacion.com/files/susc/cdj/conc/nsr_10.pdf.

MADS. (2017). Resolución No. 0472, Reglamento para la gestión integral de los residuos generados en las actividades de construcción y demolición - RCD. https://www.minambiente.gov.co/documento-normativa/resolucion-0472-de-2017/.

MADS. (2019). Estrategia Nacional de Economía Circular. https://economiacircular.minambiente.gov.co/index.php/lineas-de-accion/flujo-materiales-de-construccion/.

MADS. (2021). Resolución No. 1257, Por la cual se modifica la Resolución 0472 de 2017 sobre la gestión integral de los residuos de construcción y demolición – RCD y se adoptan otras disposiciones. https://www.minambiente.gov.co/documento-normativa/resolucion-1257-de-2021/.

Ministerio de Transporte. (2016). Code on Structural Concrete EHE-08, España. http://asidac.es/asidac-en/wp-content/uploads/2016/07/EHE-ENG.pdf.

Naciones Unidas. (2018, diciembre). Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf.

Ortiz, O., Castells, F., Sonnemann, G. (2009). Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials, 23(1), 28–39. https://doi.org/10.1016/j.conbuildmat.2007.11.012.

Ouellet-Plamondon, C., Habert, G. (2015). Life cycle assessment (LCA) of alkali-activated cements and concretes. In F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds), Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing.

Ozcelikci, E., Kul, A., Gunal, M.F., Ozel, B.F., Yildirim, G., Ashour, A., Sahmaran, M. (2023). A comprehensive study on the compressive strength, durability-related parameters and microstructure of geopolymer mortars based on mixed construction and demolition waste. Journal of Cleaner Production, 396, 136522. https://doi.org/10.1016/j.jclepro.2023.136522.

Provis, J., van Deventer, J.S.J. (2009). Geopolymers: Structure, processing properties and industrial applications, Woodhead Publishing Ltda.

Rashad, A.M., Bai, Y., Basheer, P.A.M., Milestone, N.B., Collier, N.C. (2013). Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites, 37, 20-29. https://doi.org/10.1016/j.cemconcomp.2012.12.010.

Robayo-Salazar, R., Valencia-Saavedra, W., Mejía de Gutiérrez, R. (2022). Recycling of concrete, ceramic, and masonry waste via alkaline activation: Obtaining and characterization of hybrid cements. Journal of Building Engineering, 46, 103698. https://doi.org/10.1016/j.jobe.2021.103698.

Robayo-Salazar, R.A., Valencia-Saavedra, W. Mejía de Gutiérrez, R. (2020). Construction and Demolition Waste (CDW) Recycling — As Both Binder and Aggregates — In AlkaliActivated Materials: A Novel Re-Use Concept. Sustainability, 12, 5775. https://doi.org/10.3390/su12145775.

Shagñay, S., Bautista, A., Velasco, F., Torres-Carrasco, M. (2021). Hybrid cements: Towards their use as alternative and durable materials against wear. Construction and Building Materials, 312, 125397. https://doi.org/10.1016/j.conbuildmat.2021.125397.

Swiss Centre for Life Cycle Inventories. (2019). Ecoinvent OpenLCA database version 3.6. https://www.ecoinvent.org/database.html.

Tan, J., Cai, J., Li, J. (2022a). Recycling of unseparated construction and demolition waste (UCDW) through geopolymer technology. Construction and Building Materials, 341, 127771. https://doi.org/10.1016/j.conbuildmat.2022.127771.

Tan, J., Cizer, Ö., De Vlieger, J., Dan, H., Li, J. (2022b). Impacts of milling duration on construction and demolition waste (CDW) based precursor and resulting geopolymer: Reactivity, geopolymerization and sustainability. Resources, Conservation and Recycling, 184, 106433, https://doi.org/10.1016/j.resconrec.2022.106433.

Turner, L.K., Collins, F.G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.

Valencia-Saavedra, W., Robayo-Salazar, R.A., Mejía de Gutiérrez, R. (2021). Alkali-Activated Hybrid Cements Based on Fly Ash and Construction and Demolition Wastes Using Sodium Sulfate and Sodium Carbonate. Molecules, 26(24), 7572. https://doi.org/10.3390/molecules26247572.

Yıldırım, G., Kul, A., Özçelikci, E., Sahmaran, M., Aldemir, A., Figueira, D., Ashour, A. (2021). Development of alkali-activated binders from recycled mixed masonry-originated waste. Journal of Building Engineering, 33, 101690. https://doi.org/10.1016/j.jobe.2020.101690.

Zaharaki, D., Galetakis, M., Komnitsas, K. (2016). Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Construction and Building Materials, 121, 686–693. https://doi.org/10.1016/j.conbuildmat.2016.06.051.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales