Structural analysis of the RE3Ba5Cu8O18 (RE = Dy, Gd, Ho, Sm, Y, Yb) superconductor system
PDF (Español (España))

How to Cite

Parra Vargas, C. A., Canaría-Camargo, C. C. ., Roa-Rojas, J. ., & Albino-Aguiar, J. . (2021). Structural analysis of the RE3Ba5Cu8O18 (RE = Dy, Gd, Ho, Sm, Y, Yb) superconductor system. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 45(174), 83–94. https://doi.org/10.18257/raccefyn.1163

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this paper, we report the synthesis and structural characterization of the RE3Ba5Cu8O18 (RE = Dy, Gd, Ho, Sm, Y, Yb) system, which adds to the findings reported by Aliabadi, et al., who determined a critical temperature (TC) of ∼ 100 K for the superconducting Y3Ba5Cu8O18 system and evaluated its structural response in a sample. The new RE3Ba5Cu8O18 system was produced using the solidstate reaction method and a similar thermal process as the one used for the superconductor RE: 123. The experimental results obtained with X-ray diffraction and the Rietveld analysis showed that these samples had the expected crystal structure. However, it was obvious that the presence of non-superconducting phases did not affect the superconducting transition temperature. Moreover, magnetic studies revealed that RE3Ba5Cu8O18 samples showed a superconductivity transition within a temperature range of 80 - 93 K depending on the rare earth.

https://doi.org/10.18257/raccefyn.1163

Keywords

New superconducting materials | RE3Ba5Cu8O18 superconductor | Solid-state reaction
PDF (Español (España))

References

Aliabadi, A., Farshchi, Y.A., Akhavan, M. (2009). A new Y-based HTSC with Tc above 100 K. Physica C. 469: 2012-2014.

Ayas, O. (2011). The Structural, Superconducting and Transport Properties of the Compounds Y3Ba5Cu8O18 and Y3Ba5Ca2Cu8O18. J. Supercond. Nov. Magn. 24: 2243-2252.

Dias, F.T., Oliveira C.P., Vieira, V.N., Silva D.L., Mesquita, F., Almeida, M.L., Schaf, J., Pureur, P. (2014). Magnetic irreversibility and zero resistance in granular Y358 superconductor. Journal of Physics Conference Series. 568: 1-5.

Gholipour, S., Daadmehr, V., Rezakhani, A.T., Khosroabadi, H., Shahbaz-Tehrani, F., Hosseini-Akbarnejad, R. (2012). Structural Phase of Y358 Superconductor Comparison with Y123. J. Supercond. Nov. Magn. 25: 2253-2258.

Khosroabadi, H., Rasti, M., Akhavan, M. (2014). Structural analysis of Y3Ba5Cu8O19−δhigh-Tc superconductor by ab initio density functional theory. Phys. C Supercond. 497: 84-88.

Landínez-Téllez, D.A., Cabrera-Báez, M., Roa-Rojas, J. (2012). Structure and conductivity fluctuations of the Y3Ba5Cu8O18 superconductor. Modern Physics Letters B. 26: 1-11.

Pavan-Kumar, S., Santosh, M., Swarup-Raju, P.M. (2018). Structural and Thermal Validations of Y3Ba5Cu8O18 Composites Synthesized via Citrate Sol-Gel Spontaneous Combustion Method. J. Supercond. Nov. Magn. 31: 1279-1286.

Peña, J.P., Martínez, D.B., Parra-Vargas, C.A. (2013). Magnetic Measurements and Kinetic Energy of the Superconducting Condensate in SmBa2Cu3O7−δ. Brazilian J. Phys. 43: 22-27.

Pimentel-Jr, J. L., Martínez-Buitrago, D., Supelano, I., Parra-Vargas, C. A., Mesquita, F. R., Pureur, P. (2015). Synthesis and Characterization of the Superconductors Y3Ba5Cu8−xFexO18 (0.0597 ≤x ≤0.1255). Journal of Superconductivity and Novel Magnetism. 28: 509-512.

Rekaby, M., Roumié, M., Abou-Aly, A., Awad, R., Yousry, M. (2014). Magnetoresistance Study of Y3Ba5Cu8O18 Superconducting Phase Substituted by Nd3+ and Ca2+ Ions. J. Supercond. Nov.Magn. 27: 2385-2395.

Sandoval-Gutiérrez, S., Supelano, G.I., Roa-Rojas J., Parra-Vargas, C.A. (2015). Production a characterization of new system superconductor TR3Ba8Cu11Oδ. Journal of Physics: Conference Series. 687: 1-4.

Sujinnapram, S., Udomsamuthirum, P., Kruaehong, T., Nilkamjon T., Ratreng S. (2011). XRD spectra of new YBaCuO superconductors. Bull. Meter. Sci. 34: 1053-1057.

Slimani, Y., Hannachi, E., Zouaoui, M., Ben-Azzouz, F. (2018). Excess Conductivity Investigation of Y3Ba5Cu8O18±δ Superconductors Prepared by Various Parameters of Planetary Ball Milling Technique. J. Supercond. Nov. Magn. 31: 2339-2348.

Supelano, G.I., Pimentel, J.L., Palacio, C.A., Mejía-Gómez, J.A., Menegotto-Costa, R., Caicedo-Mateus, F., Martínez-Buitrago, D., Roa-Rojas, J., Mesquita, F., Parra-Vargas, C.A. (2016). Weak Field Magnetic Susceptibility Fluctuations Above the Superconducting Transition YBa2Cu3-xFexO7-δ (0.05 ≤x ≤0.12). J. Low Temp. Phys. 182: 141-152.

Supelano, G.I., Sarmiento-Santos, A., Parra-Vargas, C.A. (2014). Magnetic fluctuations on TR3 Ba5Cu8Oδ (TR=Ho, Y and Yb) superconducting system. Phys. B Condens Matter. 455: 79-81.

Tarascón, J.M., McKinnon, W.R., Greene, L.H., Hull, G.W., Vogel, E.M. (1987). Oxygen and rare-earth doping of the 90 K superconducting perovskite YBa2Cu3O7-x. Physical Review B. 36: 226-234.

Tavana A. & Akhavan M. (2010). How Tc can go above 100 K in the YBCO family. The European Physical Journal B. 73: 79-83.

Topal, U. & Akdogan, M. (2012). The Role of Oxygenation on Superconducting Properties RE3Ba5Cu8O18 (RE =Y, Sm and Nd) Compounds. J. Supercond. Nov. Magn. 25: 239-244.

Topal, U., Akdogan, M., Ozkan, H. (2011). Electrical and Structural Properties of RE3Ba5Cu8O18 (RE=Y, Sm and Nd) Superconductors. J. Supercond. Nov. Magn. 24: 2099-2102.

Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., Ratreng, S. (2010). The New Superconductors of YBaCuO Materials. J Supercond Nov Magn. 23: 1377-1380.

Vovk, R.V. (2008). Effect of high pressure on the fluctuation conductivity and the charge transfer YBa2Cu3O7−δsingle crystals. J. Alloys Compd. 453: 69-74.

Wu, K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Chu, C.W. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58: 908.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales