Effect of nanoestructure on the thermal and magnetic properties of 2D and 0D type nanomaterials
Portada 44 (170) 2020
PDF (Español (España))

Supplementary Files

PDF (Español (España))
PDF (Español (España))
PDF (Español (España))
PDF (Español (España))

How to Cite

Zambrano Romero, G. A. (2020). Effect of nanoestructure on the thermal and magnetic properties of 2D and 0D type nanomaterials. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(170), 153–168. https://doi.org/10.18257/raccefyn.916

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this review paper, we present a study related to the nanostructure effect on the properties and applications of nanomaterials. Given in fact the broad field of research of the nanomaterials science, we analyze in particular the 2D YSZ (Yttria-Stabilized Zirconia-ZrO2/Y2O3) thermal barrier nanostructured protective thin film coatings deposited by PVD (Physical Vapor Deposition) sputtering technique at an oblique angle, and the 0D magnetic nanoparticles of Co-Zn ferrites (Co1-xZnxFe2O4) obtained by chemical coprecipitation method. In the case of YSZ thermal barrier 2D nanostructured protective coatings, it was concluded that the value of thermal conductivity (k) is strongly influenced by the “zigzag” microstructure of PVD coatings. A decrease of (k) in an order of magnitude, when the columns change from normal growth orientation (α = 0) with respect to the substrate surface, to a microstructure in a “zigzag” pattern with n = 50 repetitions, is presented. This shows the growth potential of YSZ thin films by manipulating the nanostructure at an oblique angle deposition as an effective method to improve the thermal insulating property of this material. On the other hand, we can established that the magnetic properties of the Co1-xZnxFe2O4 nanoparticles such as the coercive field and the saturation magnetization are strongly correlated to particle size and crystal structure properties, and the Co1-xZnxFe2O4 ferrite presented a tendency to superparamagnetic behavior at room temperature. This result implies that the magnetic nanoparticles can be considered soft magnetic material. The above makes Co1-xZnxFe2O4 nanoparticles attractive for applications in the field of photonics and electronics, as well as for biomedical applications.

https://doi.org/10.18257/raccefyn.916

Keywords

Nanostructured materials; Yttria stabilized zirconia; Zinc cobalt ferrites; Sputtering; Chemical co-precipitation.
PDF (Español (España))

References

Alvarado-Gil, J.J., Zelaya-Angel, O., Sanchez-Sinencio, F., Yáñez Limón, J. M., Vargas, H., Figueroa, J.C.C. (1995). Photoacoustic monitoring of processing conditions in cooked tortillas: Measurements of thermal diffusivity. J Food Sci. 60: 438-442.

Amaya, C., Caicedo, J.C., Yáñez-Limón, J.M., Vargas, R.A., Zambrano, G., Gómez, M.E., Prieto, P. (2012). A non-destructive method for determination of thermal conductivity of YSZ coatings deposited on Si substrates. Mater Chem Phys. 136: 917.

Amaya, C., Prías-Barragán, J.J., Aperador, W., Hernández-Landaverde, M.A., Ramírez- Cardona, M., Caicedo, J.C., Rodríguez, L.A., Snoeck, E., Gómez, M.E., and Zambrano, G. (2017). Thermal conductivity of yttria-stabilized zirconia thin films with a zigzag microstructure. J Appl Phys. 121: 245110-1-245110-9.

Amaya, C., Prías-Barragan, J.J., Caicedo, J.C., Yañez-Limón, J.M., Zambrano, G. (2109). Chapter 8: Impact of the Glancing Angle Deposition on the Yttria-Stabilized Zirconia Growth and Their Thermal Barrier Coating Properties. En J.A. Perez-Taborda and A.G. Avila Bernal. Coatings and thin film technologies (149-170). London, SE19SG – United Kingdom. Printed in Croatia. IntechOpen.

An, K., Ravichandran, K.S., Dutton, R. E., Semiatin, S.L. (1999). Microstructure, texture, and thermal conductivity of single layer and multilayer thermal barrier coatings of Y2O3- stabilized ZrO2 and Al2O3 made by physical vapor deposition. J Am Ceram Soc. 82 (2):399-406.

Baba, T., Ono, A. (2001). Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas Sci Technol. 12: 2046-2057.

Bahadur, D., Giri, J., Bibhuti, B.N., Sriharsha, T., Pradhan, P., Prasad, N.K., Barick, K.C., Ambashta, R.D. (2005). Processing, properties, and some novel applications of magnetic nanoparticles. Pramana J Phys. 65 (4): 663-679.

Bansi Dhar, M., Md. Azahar A. (2018). Nanomaterials for Biosensors: Fundamentals and Applications. En Bansi Dhar Malhotra and Md. Azahar Ali. Chapter 1, Nanomaterials in Biosensors: Fundamentals and Applications (1-74). Amsterdam, Netherlands. Elsevier. https://doi.org/10.1016/C2015-0-04697-4.

Bento, A.C., Dias, D.T., Olenka, L., Medina, A.N., Baesso, M.L. (2002). On the application of thephotoacoustic methods for the determination of thermo-optical properties of polymers. Braz J Phys. 32: 483-494.

Cahill, D.G, Braun, P.V, Chen, G., Clarke, D.R, Fan, S., Goodson, K.E, Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L. (2014). Nanoscale thermal transport. II. 2003-2012. Appl Phys Rev. 1: 011305.

Cao, G. (2004). Synthesis, Properties and Applications. London, England. Imperial College Press. Filla, B.J. (1997). A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics. Rev Sci Instrum. 68 (7):2822. Fujikane, M., Setoyama, D., Nagao, S., Nowak, R., Yamanaka, S. (2007). Nanoindentation examination of yttria-stabilized zirconia (YSZ) crystal. J Alloy Compd. 431 (1-2): 250-255.

Gell, M., Jordan, E., Vaidyanathan, K., MaCarron, K., Barber, B., Sohn, Y., Tolpygo, V.K. (1999). Bond bond stress and spallation mechanisms of thermal barrier coatings. Surface and Coating Technology. 53-60: 120-121.

Girgis, E., Wahsh, M.M., Othman, A.G., Bandhu, L., Rao, K.V. (2011). Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles Nanoscale Res Lett. 6:460. https://doi.org/10.1186/1556-276X--460.

González de la Cruz, G., Gurevich, Y.G., Logvinov, G.N., Muñoz Aguirre, N. (2000). Effective thermal conductivityand thermal diffusivity of two layer samples in photoacousticnexperiments. Super y Vacio. 10: 40-47.

Gupta, A.K., Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials. 26 (18): 3995-4021.

Heiroth, S., Lippert, T., Wokaun, A., Döbeli, M., Rupp, J. L.M., Scherrer, B. (2010). Yttriastabilized zirconia thin films by pulsed laser deposition: Microstructural and compositional control. J Eur Ceram Soc. 30 (2): 489-495.

Hubler, A., Osuagwu, O. (2010). Digital quantum batteries: Energy and information storage in nanovacuum tube arrays. Complexity. 15 (5): 48-55. https://doi.org/10.1002/cplx.20306.

Hultman, L., Munz, W.D, Musil, J., Kadlec, S., Petrov, I., Greene, J.E. (1991). Low-energy (~100 eV) ion irradiation during growth of TiN deposited by reactive magnetron sputtering: Effects of ion flux on film microstructure. J Vac Sci Technol A: Vacuum, Surfaces, and Films. 9: 434.

ISO/TS 80004-1:2015 - Nanotechnologies — Vocabulary — Part 1: Core terms. (2015). International Organization for Standardization. Retrieved 8 January 2018.

Jones, R.L. (1996). Experiences in seeking stabilizers for zirconia having hot corrosion-resistance and high temperature tetragonal (t’) stability. Naval Research Laboratory. NRL/MR/6170–96-7841.

Jordan, A., Scholz, R., Wust, P., Fahling, H., Roland F. (1999). Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 201: 413-419.

Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen M., Wust P., Nadobny, J., Schirra H., Schmidt, H., Deger S., Loening S., Lanksch W., Roland F. (2001). Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater. 225: 118-126.

Kabacoff, L.T. (1998). Thermally sprayed nano-structured thermal barrier coatings. NATO Workshop on Thermal Barrier Coatings, Aalborg, Denmark, AGARD-R-823, paper 12.

Klemens, P. G., Gell, M. (1998). Thermal conductivity of thermal barrier coatings. Mat Sci Eng A. 245: 143-149.

Knobel, M., Nunes, W.C., Socolovsky, L.M., Biasi, E.D., Vargas, J.M., Denardin, J.C. (2008). Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems, J Nanosci Nanotechnol. 8 (6): 2836-57.

Koosloos, M.F.J., van Liempd, G.G., Houben, J.M. (1998). Effect of local thermal shock load on plasma sprayed thermal barrier coatings. Surface Eng. 14 (2): 144.

Kyongjun, A., Ravichandran, K.S., Semiatin, S.L. (1999). Microstructure, texture, and thermal conductivity of single-layer and multilayer thermal barrier coatings of Y2O3 stabilized ZrO2 and Al2O3 made by physical vapor deposition. J Amer Ceram Soc. 82 (2): 299.

Lee, S.M., Matamis, G., Cahill, D.G. (1998). Thin-film materials and minimum thermal conductivity. Microscale Thermophysical Engineering. 2: 31-36.

Li, X., Kutal, C. (2002). Synthesis and characterization of superparamagnetic CoFeO nanoparticles. J Alloy Compd. 349: 264-268.

Lintymer, J., Gavoille, J., Martin, N., Takadoum, J. (2003). Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films. Surf Coat Tech. 174-175: 316.

López, J., González-Bahamon, L.F., Prado, J., Caicedo, J.C., Zambrano, G., Gómez, M.E., Esteve, J. and Prieto, P. (2012). Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J Magn Magn Mater. 324:394 - 402.

López, J., González, L.F., Quiñonez, M.F., Gómez, M.E., Porras-Montenegro, N., Zambrano, G. (2014). Magnetic field role on the structure and optical response of photonic crystals based on ferrofluids containing Co0.25Zn0.75Fe2O4 nanoparticles, J Appl Phys. 115: 193502-1–193502-7.

López Medina, J.A., González Reyes L.E., Porras-Montenegro, N., Zambrano, G. (2016). Band structure dependence on the external perpendicular magnetic field and Zn concentration of photonic crystals made of Co1-xZnxFe2O4 nanoparticles. IEEE T Mag. 52 (1): 4600107.

Mandelis, A., Zver, M.M. (1985). Theory of photopyroelectric spectroscopy of solids. J Appl Phys. 57: 4421-4430.

Mansanares, A.M., Bento, A.C., Vargas, H., Leite, N.F. and. Miranda, L.C.M. (1990). Photoacoustic measurement of the thermal properties of two-layer systems. Phys Rev B. 42: 4477.

Mayen Mondragon R, Yàñez-Limòn J.M. (2006). Study of blue phases transition kinetics by thermal lens spectroscopy in cholesteryl nonanoate. The Review of Scientific Instruments. 77: 044903-1 – 044903-7.

Meier, S.M., Gupta, D.K. (1994). The evolution of thermal barrier coatings in gas turbine engine applications. J Eng Gas Turbines Power. Trans. ASME. 116 (1): 250-257.

Messier, R., Giri, A.P., Roy, R.A. (1984). Revised structure zone model for thin film physical structure. J Vacuum Sci Technol A. 2: 500.

Morrell, P., Taylor, R. (1985). Thermal diffusivity of thermal barrier coatings of ZrO2 stabilized with Y2O3. High Temperatures - High Pressures. 17: 79.

Motohiro, T., Taga, Y. (1989). Thin film retardation plate by oblique deposition. Appl Optics. 28:2466.

Ozin, G.A., Arsenault, A.C., Cademartiri, L. (2009). Nanochemistry: A Chemical Approach to Nanomaterials, second ed. London, England. Royal Society of Chemistry.

Pei, W., Kumada, H., Natusme, T., Saito, H., Ishio, S. (2007). Study on magnetite nanoparticles synthesized by chemical method. J Magn Magn Mater. 310 (2): 2375-2377.

Pérez-Castillejos, R., Plaza, J.A., Esteve, J., Losantos, P., Acero, M.C., Cane, C., Serra-Mestres, F. (2000). The use of ferrofluids in micromechanics. Sensors Actuat. 84: 176-180.

Piso, M.I. (1999). Applications of magnetic fluids for inertial sensors. J Magn Magn Mater. 201 (1):380-384.

Portal, R. (1997). Etude de la conductivite thermique de couches minces de ZrO2-Y2O3 deposees par EB-PVD. Rapport de stage SNECMA.

Prías-Barragán, J.J., Muñoz-Gómez, A.P., Ariza-Calderón, H. (2102). System for Measuring Thermal Conductivity in Multiple Solid Samples. Co-patent 2012-9821.

Proença, C.A., Baldo, T.A., Freitas, T.A., Materón, E.M., Wong, A., Durán, A.A., Melendez, M.E., Zambrano, G., Faria, R.C. (2019). Novel enzyme-free immunomagnetic microfluidic device based on Co0.25Zn0.75Fe2O4 for cancer biomarker detection. Anal Chim Acta. Accepted. https://doi.org/10.1016/j.aca.2019.04.047.

Robbie, K., Brett, M.J. (1997). Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J Vac Sci Technol. A. 15: 1460-1465.

Robbie, K., Brett, M.J., Lakhtakia, A. (1996). Chiral sculptured thin films. Nature. 384: 616.

Rosencwaig, A., Gersho, A. (1976). Theory of the photo acoustic effect of solids. J Appl Physics. 47: 64-69.

Salata, O.V. (2004). Applications of nanoparticles in biology and medicine, J Nanobiotechnology 2 (3): 1-6.

Scherer, C., Figueiredo Neto, A.M. (2005). Ferrofluids: properties and applications, Braz J Phys. 35 (3A): 718-727.

Skinner, S.J., Kilner, J.A. (2003). Oxygen ion conductors. Materials Today. 6 (3): 30-37.

Soyez, G., Eastman, J.A., Thompson, L.J., Bai, G.R., Baldo, P.M. (2000). Grain-size-dependent thermalconductivity of nanocrystalline yttria-stabilized zirconia films grown by metalorganic chemical vapor deposition. Applied Physics Letters. 77 (8): 1155-1157.

Takadoum, J., Lintymer, J., Gavoille, J., Martin, N. (2005). Chromium multilayered thin films with orientated microstructure. J Physique IV France. 123: 137.

Torres-Rodríguez, J., Soto, G. López Medina, J.A., Portillo-López, A., Hernández-López, E.L., Vargas Viveros, E., Elizalde Galindo, J.T., Tiznado, H., Flores, D.L., Muñoz-Muñoz, F. (2019). Cobalt zinc ferrite and magnetite SiO2 nanocomposite powder for magnetic extraction of DNA. J Sol-Gel Sci Technol. Accepted. https://doi.org/10.1007/s10971-019-05017-z.

Unal, O., Mitchell, T.E., Heuer, A.H. (1994). Microstructures of Y2O3 Stabilized ZrO2 Electron Beam Physical Vapor Deposition Coatings on Ni Base Superalloys. J Amer Ceramic Soc. 77 (4): 984-992.

van Kranenburg, H., Lodder, J.C. (1994). Tailoring growth and local composition by obliqueincidence deposition: a review and new experimental data. Mater Sci Eng. 11 (7): 295-354.

Wortman, D.J., Nagaraj, B.A., Duderstadt, E.C. (1989). Thermal barrier coatings for gas turbine use. Mat Sci Eng. A121: 443.

Zambrano Romero, G.A., Gómez de Prieto, M.E., Prieto Pulido, P.A., Caicedo Angulo, J.C. y Amaya Hoyos, C.A. (2016). Dispositivo para depósito en ángulo oblicuo de materiales a escalas nano y micrométricas mediante técnicas PVD. Co-patent 14-185631.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.