Design, synthesis, characterization and in vitro evaluation of antimicrobial peptides against pathogenic bacteria resistant to antibiotics
Portada 43 (169) 2019
PDF (Español (España))
XML (Español (España))

How to Cite

Ortiz López, C. . (2019). Design, synthesis, characterization and in vitro evaluation of antimicrobial peptides against pathogenic bacteria resistant to antibiotics. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(169), 614–627. https://doi.org/10.18257/raccefyn.864

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Antimicrobial peptides have attracted much attention as new therapeutic agents against infectious diseases. In this work, we made the rational in silico design of 18 cationic peptides with antimicrobial activity against resistant pathogenic bacteria using the DEPRAMP software developed in the GIBIM research group. Subsequently, the designed peptides were synthesized in solid phase using the Fmoc strategy in an acid medium. Then, sequences of 17 amino acids were obtained with a degree of purity between 95 and 98%, secondary structure α-helix, net cationic charge (between +3 and +6), pI between 10.04 to 12.03, and hydropathy index between -0.62 and 1.14. All antimicrobial peptides showed antibacterial and bactericidal activity in vitro against at least one of the pathogenic strains studied: Escherichia coli O157: H7, Pseudomonas aeruginosa, and Staphylococcus aureus Resistant to Methicillin. The GIBIM-P5S9K and GIBIM-P5F8W antimicrobial peptides presented the best antibacterial activities reaching MIC99 in ranges of 0.5 to 25 μM against the three strains evaluated. E. coli O157: H7 was the most sensitive strain to the GIBIMP5F8W presenting 0.5 μM MIC99 and 10 μM MBC, and P. aeruginosa was the most resistant strain with MIC values over 100 μM against more than five antimicrobial peptides. The toxicity of peptides in erythrocytes produced a hemolysis percentage of less than 40% in concentrations of 50 μM. On the other hand, in the lung carcinoma cell lines A549 and HepG2, the only compound that presented toxicity was GIBIM-P5F8W, presenting 36% of viable cells in concentrations of 100 μM of the peptide in the A549 cell line.

https://doi.org/10.18257/raccefyn.864

Keywords

Antimicrobial peptides; microbial resistance; antimicrobial activity.
PDF (Español (España))
XML (Español (España))

References

Abercrombie, J. J., Leung, K. P., Chai, H., Hicks, R. P. (2015). Bioorganic & Medicinal Chemistry Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid. Bioorganic & Medicinal Chemistry. 23 (6):1341-1347.

Aguilar, M. (2004). HPLC of Peptides and Proteins: Methods and Protocols, Human press. Totowa, New Jersey, United States p. 251.

Andersson, D. I., Hughes, D., Kubicek-Sutherland, J. Z. (2016). Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 26: 43-57.

Aoki W & Ueda M. (2013). Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals. 6: 1055-1081.

Babu, V. V. S. & Gopi, H. N. (1998). Rapid and efficient synthesis of peptide fragments containing α-Aminoisobutyric acid using Fmoc-amino acid chlorides / potassium salt of 1-Hydroxybenzotriazole. 39: 1049-050.

Bakshi, K., Liyanage, M., Volkin, D., Middaugh, C. (2014). Circular dichroism of peptides, Methods Mol. Biol. 1088: 247-253.

Berthold, N., Czihal, P., Fritsche, S., Sauer, U., Schiffer, G., Knappe, D., Alber, G., Hoffmann, R. (2013). Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by Gram-negative pathogens, Antimicrob. Agents Chemother. 57: 402-409.

Broekman, D. C., Frei, D. M., Gylfason, G. A., Steinarsson, A., Jörnvall, H., Agerberth, B., Maier, V. H. (2011). Cod cathelicidin: Isolation of the mature peptide, cleavage site characterisation and developmental expression. Developmental and Comparative Immunology. 35 (3): 296-303.

Brogan, D. M. & Mossialos, E. (2016). A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility, Global. Health. 12: 1-7.

Chan, D. I., Prenner, E. J., Vogel, H. J. (2006). Tryptophanand arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta. 1758: 1184-1202.

Chaudhary, A. S. (2016). A review of global initiatives to fight antibiotic resistance and recent antibiotic’s discovery, Acta Pharm. Sin. B. 6: 552-556.

Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E. W., Vasil, M. L., Hodges, R.S. (2005). Rational Design of alpha-Helical Antimicrobial Peptides with Enhanced Activities and Specificity/Therapeutic Index, J Biol.Chem. 280: 12316-12329.

Conlon, J. M., Mechkarska, M., Coquet, L., Jouenne, T., Leprince, J., Vaudry, H., King, J. D. (2011). Peptides characterization of antimicrobial peptides in skin secretions from discrete populations of Lithobates chiricahuensis (Ranidae) from central and southern Arizona. Peptides. 32(4): 664-669.

Cruz, J., Ortiz, C., Guzmán, F., Fernández-Lafuente, R., Torres, R. (2014). Antimicrobial peptides: Promising compounds against pathogenic microorganisms. Curr Med Chem. 21 (20): 2299-321.

Cruz, J., Flórez, J., Torres, R., Urquiza, M., Gutiérrez, J. A., Guzmán, F., Ortiz, C. (2017). Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or Poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). Nanotechnology. 28 (13): 5102.

Cruz J, Rondón-Villareal P., Torres R., Urquiza M., Álvarez C., Abengózar MA., Sierra D., Rivas L., Fernández-Lafuente R., Ortiz C. (2018) Design of bactericidal peptides against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Medicinal Chemistry. 14: 1-12.

Danial, M.; van Dulmen, T.H.; Aleksandrowicz, J.; Pötgens, A.J.; Klok, H.A. (2012). Site-specific PEGylation of HR2 peptides: Effects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjug. Chem. 23: 1648-1660.

Epand, R. M. & Vogel, H. J. (1999). Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1462: 11-28.

Fernández-Reyes, M., Díaz, D., de la Torre, B. G., Cabrales-Rico, A., Vallès- Miret, M., Jiménez-Barbero, J., Andreu, D., Rivas, L. (2010). Lysine Nε-Trimethylation, a Tool for Improving, J. Med. Chem. 53: 5587-5596.

Houston, M. E., Jr., Kondejewski, L.H., Karunaratne, D.N., Gough, M., Fidai, S., Hodges, R.S., Hancock, R.E. (1998). Influence of preformed alpha-helix and alphahelix induction on the activity of cationic an- timicro- bial peptides. J. Pept. Res. 52: 81-88.

Il’ina, A.P., Kulikova, O. G., Maltsev, D. I., Krasnov, M. S., Rybakova, E., Skripnikova, V. S., Kuznetsova, E. S., Buryak, A. K., Yamskova, V. P., Yamskov, A. (2011). MALDI-TOF mass spectrometric identification of novel intercellular space peptides, Appl. Biochem. Microbiol. 47: 118-122.

Jaradat, D.M.M. (2018) Thirteen decades of peptide synthesis: Key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids. 50 (1): 39-68. Doi:10.1007/s00726-017-2516-0

Jenssen, H., Hamill, P., Hancock, R.E.W. (2006). Peptide antimicrobial agents, Clin. Microbiol. Rev. 19: 491-511.

Jofré, C., Guzmán, F., Cárdenas, C., Albericio, F., Marshall, S.H. (2011) A natural peptide and its variants derived from the processing of infectious pancreatic necrosis virus (IPNV) displaying enhanced antimicrobial activity: A novel alternative for the control of bacterial diseases. Peptides. 32: 852-858.

Joo, H.S., Fu, C.I., Otto, M. (2016) Bacterial Strategies of Resistance to Antimicrobial Peptides, Philos Trans R Soc Lond B Biol Sci. 371: 20150292.

Kandasamy, S. K. & Larson, R. G. (2006). Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers, Biochim. Biophys. Acta - Biomembr. 1758: 1274-1284.

Kim, J. Y., Park, S. C., Yoon, M. Y., Hahm, K. S., Park, Y. (2011). C-terminal amidation of PMAP-23: Translocation to the inner membrane of Gram-negative bacteria, Amino Acids. 40: 183-195.

Kim, J.S., Joeng, J. H., Kim, Y. (2017) Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin. J Microbiol Biotechnol. 27: 759-767.

Kumar P., Kizhakkedathu J.N., Straus S. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomacromolecules. 8 (1): 4.

Lee, S.H., Kim, S.J., Lee, Y.S., Song, M.D., Kim, I.H., Won, H.S. (2011). De novo generation of short antimicrobial peptides with simple amino acid composition. Regul. Pept. 166: 36-41.

Lee, J.K., Park, S.C., Hahm, K.S., Park, Y. (2013). Antimicrobial HPA3NT3 peptide analogs: Placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. Biochim. Biophys. Acta. 1828:443-54.

Li, B., Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant- Associated orthopedic infections. J Orthopaedic Res. 36 (1): 22-32. doi:10.1002/jor.23656

Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. (2012). Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 37 (2): 207-15. Doi: 10.1016/j.peptides.2012.07.001

Li, J., Koh, J. J., Liu, S., Lakshminarayanan, R., Verma, C. S., Beuerman, R. W. (2017). Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Frontiers in Neuroscience. 11: 73. Doi: 10.3389/fnins.2017.00073

Lohner, K. (2001). The role of membrane lipid composition in cell targeting of antimicrobial peptides. In: Development of Novel Antimicrobial Agents: Emerging Strategies, Lohner, K. (Editor). Horizon Scientific Press: Wymondham, Norfolk, p. 149-165.

Lozano, D., Díaz, L., Echeverry, M., Pineda, S., Máttar, S. (2010). Staphylococcus aureus resistentes a meticilina (SARM) positivos para PVL aislados en individuos sanos de Montería-Córdoba, Universitas Scientiarum. 1352: 159-165.

Malik, E., Dennison, S. R., Harris, F., Phoenix, D. A. (2016). pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel, Switzerland). 9 (4): 67. doi:10.3390/ph9040067

Mathur, P. & Singh, S. (2013). Multidrug resistance in bacteria: A serious patient safety challenge for India. Journal of Laboratory Physicians. 5 (1): 5-10.

Merlino, F., Carotenuto, A., Casciaro, B., Martora, F., Loffredo, M. R. , Di Grazia, A., Yousif, A. M., Brancaccio, D., Palomba, L., Novellino, E., Galdiero, M., Iovene, M.R.,Mangoni, M.L., Grieco, P. (2017). Glycine-replaced derivatives of [Pro 3 ,DLeu 9 ]TL, a temporin L analogue: Evaluation of antimicrobial, cytotoxic and hemolytic activities, Eur. J. Med. Chem. 139: 750-761.

Nakhjavani, M., Zarghi, A., H Shirazi, F. (2014). Cytotoxicity of selected novel chalcone derivatives on human breast, lung and hepatic carcinoma cell lines, Iran. J. Pharm. Res. IJPR. 13: 953-958.

Niederman, M. S. (2001). Impact ofantibiotic resistance on clinical outcomes and the cost of care. Crit. Care Med. 29: N114-20.

Oh,D., Sun, J., Nasrolahi-Shirazi, A., LaPlante, K.L., Rowley, D.C, Parang, K. (2014). Antibacterial Activities of Amphiphilic Cyclic Cell-Penetrating Peptides against Multidrug Resistant Pathogens, Mol. Pharm. 5: 161-171.

Pfalzgraff, A., Brandenburg, K., Weindl, G. (2018). Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol. 9:281-304.

Prada, Y. A., Guzmán, F., Rondón, P., Escobar, P., Ortiz, C., Sierra, A., Torres, R., Mejía-Ospino, E. (2016). A New

Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O1 57:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics & Antimicro. Prot. 8: 134-140.

Reuken, P. A., Torres, D., Baier, M., Löffler, B., Lübbert, C., Lippmann, N., Stallmach, A., Bruns, T. (2017). Risk Factors for Multi-Drug Resistant Pathogens and Failure of Empiric First-Line Therapy in Acute Cholangitis. PloS one. 12 (1): e0169900. Doi: 10.1371/journal.pone.0169900

Rozek, A., Powers, J.P., Friedrich, C.L., Hancock, R.E. (2003). Structure- based design of an indolicidin peptide analog with increased protease stability. Biochemistry. 42: 14130-14138.

Rydlo, T., Rotem, S., Mor, A. (2006). Antibacterial properties of der- maseptin S4 derivatives under extreme incubation conditions. Antimicrob. Agents Chemother. 50: 490-497. Schibli, D. J., Epand, R. F., Vogel, H. J. Epand, R. M. (2002). Tryptophan-rich antimicrobial peptides: Comparative properties and membrane interactions. Biochem. Cell Biol. 80: 667-677.

Sengupta, D., Leontiadou, H., Mark, A.E., Marrink, S. J. (2008). Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta. 1778: 2308-2317.

Shai, Y. (2002). Mode of Action of Membrane Active Antimicrobial Peptides, Biopolymers. 66: 236-248. Schmidt, C. (2017) Living in a microbial world. Nature Biotechnology. 35 (5): 401-403.

Strateva, T. & Yordanov, D. (2009). Pseudomonas aeruginosa – a phenomenon of bacterial resistance, J. Med. Microbiol. 58:1133-1148.

Tavares, L. S. , Rettore, J. V. , Freitas, R. M., Porto, W. F., Duque, A. P. Singulani, Jde L, Silva, O. N., Detoni, Mde L, Vasconcelos, E. G., Dias, S. C., Franco, O. L., Santos M de O. (2012). Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides. 37: 294-300.

Teixeira, V., Feio, M. J., Bastos, M. (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177.

Tennessen J. A. & Blouin, M. S. (2010). A revised leopard frog phylogeny allows a more detailed examination of adaptive evolution at ranatuerin-2 antimicrobial peptide loci. Immunogenetics. 62: 333-343.

Tossi A, Sandri L, Giangaspero A. (2000). Amphipathic, a helical antimicrobial peptides activity. Biopolymers. 55: 4-30.

Trindade, F., Amado, F., Pinto, J., Ferreira, R., Maia, C., Henriques, I., Vitorino, R. (2014). ScienceDirect Salivary peptidomic as a tool to disclose new potential antimicrobial peptides. Journal of Proteomics. 115: 49-57.

Tripathi, A. K., Kumari, T., Harioudh, M. K., Yadav, P. K., Kathuria, M., Shukla, P.K., Mitra, K., Ghosh, J. K. (2017) Identification of GXXXXG motif in Chrysophsin-1 and its implication in the design of analogs with cellselective antimicrobial and anti-endotoxin activities. Sci. Rep. 7: 3384-3400.

Uteng, M., Hauge, H.H., Markwick, P.R., Fimland, G., Mantzilas, D., Nissen-Meyer, J., Muhle-Goll, C. (2003). Threedimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an in- serted C-terminal disulfide bridge. Biochemistry. 42: 11417- 11426.

Vermeer, L.S., Lan, Y., Abbate, V., Ruh, E., Bui, T.T., Wilkinson, L.J., Kanno, T., Jumagulova, E., Kozlowska, J., Patel, J., McIntre, C.A., Yam, W.C., Ciu, G., Atkinson, R.A., Lam, J.K., Bansal, S.S, Drake, A.F., Mitchell, G.H., Mason, A.J. (2012). Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic-helical peptides. J. Biol. Chem. 287: 34120-34133.

Vila-Farrés, X., Giralt, E., Vila, J. (2012). Update of peptides with antibacterial activity, Curr. Med. Chem. 19:6188-98.

World Health Organization – WHO. (2017). La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos. Fecha de consulta: 23 de marzo de 2019. Disponible en: https://www.who.intes/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-forwhich-new-antibiotics-are-urgently-needed

Yang, N., Liu, X., Teng, D., Li, Z., Wang, X., Mao, R., Wang, X., Hao, Y., Wang, J. (2017). Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci. Rep. 7: 3392-3411.

Yeaman, M. & Yount, N. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 55: 27-55. Yoon, J. H., Ingale, S. L., Kim, J. S., Kim, K. H., Lee, S. H., Park, Y. K., Chae, B. J. (2014). Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Livestock Science. 159: 53-60.

Yu, H., Wang, C., Feng, L., Cai, S., Liu, X., Qiao, X., Shi, N. Wang, H., Wang, Y. (2017). Cathelicidin-trypsin inhibitor loop conjugate represents a promising antibiotic candidate with protease stability. Sci. Rep. 7: 2600-2617.

Zhu, X., Dong, N., Wang, Z., Ma, Z., Zhang, L., Ma, Q., Shan, A. (2014). Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater. 10: 244-257.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.