Geometric model for interference and diffraction with waves and particles
Portada 43 (167) 2019
PDF
HTML

How to Cite

Castañeda, R., & Matteucci, G. (2019). Geometric model for interference and diffraction with waves and particles. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(167), 177–192. https://doi.org/10.18257/raccefyn.807

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Interference and diffraction with classical waves and quantum particles is discussed in the framework of a geometric model based on its own physical principle and general law. The principle is the interaction between individual real point emitters, that characterize the waves and particles, and the virtual point emitters, that characterize the setup. The law is an energy equation that involves the energy of the wave disturbance or the particle arriving to any detector point and the potential energy determined by the setup. In this framework, the setup is configured in a preparation-measurement scheme with two accessible states named the source-turned-off and the source-turned-on states. Two-point correlation cones are prepared which induce geometric potential cones, that distribute the energy of the waves or particles to be measured, once the interaction between the point emitters takes place. Wave-particle duality, self-interference and wave collapse are irrelevant in the framework of this model. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.807
PDF
HTML

References

Born, M., and Wolf, E. (1993) Principles of Optics (6th ed. Oxford:Pergamon Press).

Case, W., Tomandl, M., Deachapunya, S., and Arndt, M. (2009) Realization of optical carpets in the Talbot and Talbot-Lau configurations. Opt. Exp. 17: 20966–20974.

Capelli, R., Dinelli, F., Gazzano, M., D’Alpaos, R., Stefani, A., Generali, G (2014). Interface functionalities in multilayer stack organic light emitting transistors (OLETs). Adv. Funct. Mat. 24: 5603–5613.

Castañeda, R. (2014) Electromagnetic wave fields in the microdiffraction domain. Phys. Rev. A 89: 013843 (14pp).

Castañeda, R. (2014) Three dimensional micro–diffraction modeling. Appl. Opt. 53 1782-1793.

Castañeda, R. (2016) Spectrum of classes of point emitters of electromagnetic wave fields. J. Opt. Soc. Am. A 33: 1769-1776.

Castañeda, R. (2017) Discreteness of the real point emitters as a physical condition for diffraction. J. Opt. Soc. Am. A 34: 184–192.

Castañeda, R. (2017) Interaction description of light propagation. J. Opt. Soc. Am. A 34: 1035-1044.

Castañeda, R., and Matteucci, G. (2017). New physical principle for interference of light and material particles. Hawkes, P.H. editor, Advances in Imaging and Electron Physics, Vol. 204, London: Elesevier – Academic Press, Ch. 1.

Castañeda, R., Matteucci, G., Capelli, R. (2016). Interference of Light and of Material Particles: A Departure from the Superposition Principle. Hawkes, P.H. editor, Advances in Imaging and Electron Physics, Vol. 197, Burlington: Academic Press, p. 1-43.

Castañeda, R., Matteucci, G., and Capelli, R. (2016) Quantum Interference without Wave-Particle Duality. J. Mod. Phys. 7: 375-389.

Feynman, R., Leighton, R., and Sands, M. (1965) The Feynman Lectures on Physics vol. 3 (Menlo Park: Addison–Wesley).

Feynman, R., and Hibbs, A. (1965) Quantum Mechanics and Path Integrals (New York: McGraw-Hill).

Juffmann, T., Milic, A., Muellneritsch, M., Asenbaum, P., Tsukernik, A., Tuexen, J., and Arndt, M. (2012) Real-time single-molecule imaging of quantum interference. Nature Nanotech. 7: 297–300.

Mandel, L., and Wolf, E. (1995) Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press).

Matteucci, G. (1990) Electron wavelike behaviour: a historical and experimental introduction. Am. J. Phys. 58: 1143 – 1147.

Matteucci, G., Pezzi, M., Pozzi, G., Alberghi, G., Giorgi F., Gabrielli, A., and Gazzadi, G. (2013) Build-up of interference patterns with single electrons. Eur. J. Phys. 34: 511–517.

Nairz, O., Arndt, M., and Zeilinger, A. (2003) Quantum interference experiments with large molecules. Am. J. Phys. 71: 319–325

Wen, J., Zhang, Y., and Xiao, M. (2013) The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Phot. 5, 83–130.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales