Determination of translational velocity of the ring vortex using multipolar expansion
Portada 43 (166) 2019
PDF (Español (España))
HTML (Español (España))

How to Cite

Gonzalez, J. F. (2019). Determination of translational velocity of the ring vortex using multipolar expansion. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(166), 31–37. https://doi.org/10.18257/raccefyn.800

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The velocity field of a vortex ring is established considering a small aspect ratio (r1/r0, where r0 is the radius of the vortex central line and r1 is the radius of cross section),for the purpose of finding the translation velocity, Γ/4πr0[log(8r0/r1) − 1/4], of the ring vortex with circulation Γ. The induced field is calculated through the Biot-Savart law using a multipole expansion; thus the translation velocity is determined by means of the comparison between the derived field and the substantial condition on the vortex surface. The formulation presented in this work is an alternative to the conventional methods in vortex dynamics. However, it offers an advantage related to the study of more complex vortical structures. The achieved results show that the translation velocity corresponds to the first order solution of the multipole expansion; which concerns curvature effects on the vorticity distribution of the cross section.  © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.800
PDF (Español (España))
HTML (Español (España))

References

Basset A.B. (1961). A treatise on hydrodynamics. New York. Dover Publications. Ed. 1.

Callegari A. J. and Ting L. (1978). Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. App. Math.35:148.

Dyson F.W. (1893). The potentialDyson F.W. (1893). The potential of an anchor ring. Part II. Phil. Trans. Roy. Soc. London A. 184: 1041-1106.

Fukumoto Y. and Moffatt H.K. (2000). Motion and expansion of a viscous vortex ring. Part I. 417: 1-45.

Fukomoto Y. and Kaplanskii F. (2008). Global time evolution of an axisymetric vortex ring at low Reynolds number. Phys. of Fluids. 20: 053103.

Fukomoto Y. and Okulov V.L. (2005). The velocity field by a helical vortex tube. Phys. of Fluids. 17: 107101 1-19.

Gray A. (1914). Notes on hydrodynamics. Phil. Mag (ser 6). 28:1-18.

Helmholtz H. (1858). Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Z. Reine Angew Math. 55: 25-55.

Jeasson F. Gonzalez. (2013). Cálculo analítico de la velocidad de traslación de vórtices eslabonados. M.S. thesis. Dept. Oceanografía, Ensenada B.C. CICESE.

Joukovskii N.E. (1907). A note on the motion of vortex ring. Mat. Sbor. 2: 483-490.

Kambe T. and Oshima Y. (1975). Generation and decay of viscous vortex ring. J. Phys. Soc. Jpn. 38: 271-280.

Kaplanski F. and Rudi U. (1999). Dynamics of a viscous vortex ring. Intl. J. Fluid Mech. Res. 26: 618-630.

Lamb H. (1932). "Vortex motion", in Hydrodynamics. pp 226-234. London. Dover Publications. Ed. 4.

Lewis T.C. (1879). On the images of vortices in a spherical vessel. Quart. J. Pure Appll. Math. 16: 338-347.Meleshko V.V., Gourjii A. and Krasnopolskaya Tatyana S. (2012).

Vortex ring: History and state of the art. J. Math. Sci. 187:772-808.

Moffatt H.K. (1988). Generalised vortex rings with and without swirl. Fluid Dyn. Res. 3: 22-30

Mohseni and Ghatib K. M. (1998). A model for universal time scale of vortex ring formation. Phys. Fluids. 10: 2436-2438.

Muller E.A., and Obermeier F. (1988). Vortex sound. Fluid Dyn. Res. 3: 43-51.

Mungal M., and Dimotakis P.E. (1984). Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148: 349-382.

Norbury J. (1973). A family of steady vortex rings. J. Fluid Mech. 57: 417-431.

Saffman P.G. (1992). Vortex Dynamics. London. Cambridge University Press.

Shariff K., and Leonard A. (1992). Vortex rings. Annu. Rev. Fluid Mech. 24: 235-279.

Stanaway S., Cantwel B.J. and Sparlart P.R. (1988). A numerical study of a forming vortex ring using a spectral method. Tech. Memo. 101041.

ThomsonW. (1867). The translatory velocity of a circular vortex ring. Phil. Mag. (ser 4). 34: 511-512.

Thomson J.J. (1883). "Part I", en A Treatise on the Motion of Vortex Rings. pp. 3-36. London. Macmillan. Ed. 1.

Velasco Fuentes O.U. (2014). Early observations and experiments on ring vortices. Eurp. J. Mech. B. 43: 166-171.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales