Thermodynamic properties, electronic and crystallographic structure, and magnetic response of the Sr2HoNbO6 material
Portada 42 (164) 2018
PDF

How to Cite

Deluque Toro, C. E., Mosquera Polo, A. S., Villa Hernández, J. I., Landínez Téllez, D. A., & Roa-Rojas, J. (2018). Thermodynamic properties, electronic and crystallographic structure, and magnetic response of the Sr2HoNbO6 material. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 42(164), 180–187. https://doi.org/10.18257/raccefyn.653

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work we used the Wien2k code, within the framework of the Kohn-Sham Density Functional Theory (DFT), applying the Full-Potential Linearized Augmented Plane Wave method (FP-LAPW) and adopting the Generalized Gradient approximation (GGA) for the exchange-correlation energy due to Perdew, Burke, and Ernzerhof, as well as the Local Density approximation (LDA) for the calculation of the Density of States and band structure of the Sr2HoNbO6 double perovskite. For calculations, we considered the Fmm (#225) space group, which was experimentally obtained from X-ray diffraction measurements and Rietveld refinement. The experimental lattice parameter was 8.018 Å, which is 99.2% in agreement with the theoretical prediction from the minimization of energy through the Murnaghan state equation. From the measurements of magnetic susceptibility as a function of temperature and the adjustment with the Curie law, we obtained a value for the effective magnetic moment of 10.01 μB, which is close to the theoretical expected from Hund’s Rule (10.60 μB). An energy gap of 3.3 eV between the valence band and the conduction band revealed the insulator character of the Sr2HoNbO6 complex perovskite for the spin up configuration, but a semiconductor feature was observed for the spin down polarization, with an energy gap of 0.77 eV. The thermodynamic properties were calculated from the state equation by using the Debye quasiharmonic model. A specific heat behavior of CV≈CP was found at temperatures below T = 500 K, with Dulong-Petit limit values doubling those reported for perovskite materials. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.653
PDF

References

Anderson O.L. (1998). Thermoelastic properties of MgSiO3 perovskite using the Debye approach. Amer. Mineral. 83:23-35.

Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J. (2001). WIEN2k, An Aug-mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria.ISBN 3-9501031-1-2.

Blanco, M.A., Francisco, E., Luaña, V. (2004). GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comp. Phys. Commun. 158: 57-72.

Bonilla M., Landínez-Téllez D.A., Arbey-Rodríguez J., Albino- guiar J., Roa-Rojas J. (2008). Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calculations. J. Magn. Magn. Mater. 320: e397-e399.

Corredor L.T., Landínez-Téllez D.A., Pimentel Jr. J., Pureur P., Roa-Rojas J. (2011). Magnetic, Structural and Morphological Characterization of Sr2GdRuO6 Double Perovskite. J. Mod. Phys. 2: 154-157.

Dedova E.S., Shadrin V.S., Petrushina M.Y., Kulkov S.N. (2016). The Study on Thermal Expansion of Ceramic Composites with Addition of ZrW2O8. Mater. Sci. Engin. 116: 012030(1)-012030(5).

Deluque-Toro C.E., Arbey-Rodríguez M.J., Landínez-Téllez D.A., Moreno-Salazar N.O., Roa-Rojas J. (2014). First principles study of the structural and electronic properties of double perovskite Ba2YTaO6 in cubic and tetragonal phases. Phys. B. 455: 18-21.

Deluque-Toro C.E., Landínez-Téllez D.A., Roa-Rojas J. (2018). Ab-initio analysis of magnetic, structural, electronic and thermodynamic properties of the Ba2TiMnO6 manganite. DYNA. 85: 27-36.

Erten O., Meetei O.N., Mukherjee A., Randeria M., Trivedi N., Woodward P. (2011). Theory of Half-Metallic Ferrimagnetism in Double Perovskites. Phys. Rev. Lett. 107:257201(1)-257201(4).

Hazen R.M. (1988). Perovskites. Sci. Am. 258: 74-81. Hohenberg P., Khon W. (1964). Inhomogeneous electron gas. Phys. Rev. 136: B864-B871.

Howard C.H., Kennedy B.J., Woodward P.M. (2003). Ordered double perovskites – a group-theoretical analysis. Acta Cryst. B. 59: 463-471.

Khandy S.A., Gupta D.C. (2018). Electronic structure, magnetism and thermoelectric properties of double perovskite Sr2HoNbO6. J. Magn. Magn. Mater. 458: 176-182

Khon W., Sham L.S. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140: A1133-A1138.

Kim J., Chen X., Shih P-C., Yang H. (2017). Porous Perovskite- Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction. Sustainable Chem. Eng. 5:10910-10917.

Kittel C. (1997). Introduction to Solid State Physics, 6th Ed. John Wiley & Sons, Inc., New York. p. 482

Kruth A., West A.R. (2001). Electrical properties of the oxygendeficient perovskites, Ca2Mn2−xNbxOγ: 0 ≤ x ≤ 1.2, with Mn valence varying from +2.0 to +4.0. J. Mater. Chem. 11:153-159.

Landínez-Téllez D.A., Llamosa D.P., Deluque-Toro C.E., Gil- Rebaza A.V., Roa-Rojas J. (2013). Structural, magnetic, multiferroic and electronic properties of Sr2ZrMnO6 double perovskite. J. Mol. Struct. 1034: 233-237.

Lee A.T., Marianetti C.A. (2018). Structural and metal-insulator transitions in rhenium-based double perovskites via orbital ordering. Phys. Rev. B. 97: 045102(1)-045102(5).

Llamosa D.P., Landínez-Téllez D.A., Roa-Rojas J. (2009). Magnetic and structural behavior of Sr2ZrMnO6 double perovskite. Phys B. 404: 2726-2729.

Lufaso M.W., Barnes P.W., Woodward P.M. (2006). Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Cryst. B. 62: 397-410.

Madueño Q., Landínez-Téllez D.A., Roa-Rojas J. (2006). Production and characterization of Ba2NdSbO6 complex perovskite as a substrate for YBa2Cu3O7-d superconducting films. Mod. Phys. Lett. B. 20: 427-437.

Molegraaf H.J.A., Hoffman J., Vaz C.A.F., Gariglio S., van der Marel D., Ahn C.H., Triscone J-M. (2009). Magnetoelectric Effects in Complex Oxides with Competing Ground States. Adv. Mater. 21: 3470-3474.

Moreno L.C., Valencia J.S., Landínez-Téllez D.A., Arbey-Rodríguez J., Martínez M.L., Roa-Rojas J., Fajardo F. (2008). Preparation and structural study of LaMnO3 magnetic material. J. Magn. Magn. Mater. 320: e19-e21.

Murnaghan, F.D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of National Academy of Sciences, USA. 30: 244-247.

Perdew J.P., Burke K., Ernzerhof M. (1996). Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77:3865-3868.

Pilo J., Miranda A., Trejo A., Carvajal E., Cruz-Irisson M. (2017). Bidimensional perovskite systems for spintronic applications. J. Mol. Model. 23: 322-325.

Qiang L., Duo-Hui H., Qi-Long C., Fan-Hou W. (2013). Phase transition and thermodynamic properties of BiFeO3 from first-principles calculations. Chin. Phys. B. 22: 037101(1)-037101(4).

Triana C.A., Corredor L.T., Landínez-Téllez D.A., Roa-Rojas J. (2011). High temperature-induced phase transitions in Sr2Gd RuO6 complex perovskite. Mater. Res. Bull. 46: 2478-2483.

Triana C.A., Landínez-Téllez D.A., Arbey-Rodríguez J., Fajardo F., Roa-Rojas J. (2012). Electronic, crystal structure and morphological properties of the Sr2DyRuO6 double perovskite. Mater. Lett. 82: 116-119.

Triana C.A., Landínez-Téllez D.A., Roa-Rojas J. (2015). General study on the crystal, electronic and band structures, the morphological characterization, and the magnetic properties of the Sr2DyRuO6 complex perovskite. Mater. Charact. 99: 128.

Wondratschek, W. 2006. International Tables for Crystallography A, Chapter 8.3, p. 732-740.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales