Fiber specklegram sensor analysis by digital image processing
Portada 42 (163) 2018
PDF (Español (España))

How to Cite

Gutiérrez, L. C., Castaño, L. F., Gómez, J. A., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., … Aristizabal, V. H. (2018). Fiber specklegram sensor analysis by digital image processing. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 42(163), 182–188. https://doi.org/10.18257/raccefyn.608

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Fiber Specklegram Sensors (FSSs) are sensors based on the analysis of specklegrams, i.e., the intensity distribution of the modal interference pattern at the output of an optical fiber. By using a finite element method, this work shows numerically simulated specklegrams of an optical fiber Thorlabs 1550BHP under a mechanical perturbation.  We employ digital image correlation to analyze the behavior of these specklegrams with different applied forces. The image correlation analysis is applied over the whole specklegram or over selected regions. The results show that the correlation between images is a suitable quantifier of the applied force. We also show that the analysis of selected regions improves the metrological parameters of these sensors. © 2018.  Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.608
PDF (Español (España))

References

Aristizabal, V. H., Hoyos, A., Rueda, E., Gomez, N. D., & Gomez, J. A. (2015). Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor. Photonic Sensors, 5 (1). http://doi.org/10.1007/s13320-014-0210-3

Arístizabal, V. H., Vélez, F. J., Rueda, E., Gómez, N. D., & Gómez, J. A. (2016). Numerical modeling of fiber specklegram sensors by using finite element method (FEM). Optics Express, 24 (24): 27225-27238. http://doi.org/10.1364/OE.24.027225

Aristizabal, V. H., Velez, F. J., & Torres, P. (2006). Numerical model and analysis of optical fibers with internal electrodes. Revista Colombiana de Física. 38 (1): 173-176. Retrieved from http://revcolfis.org/publicaciones/vol38_1/resumenes3801173.htm

Aristizabal, V. H., Vélez, F. J., & Torres, P. (2004). Modeling of photonic crystal fibers with the Scalar Finite Element Method. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5622). http://doi.org/10.1117/12.591051

Aristizabal, V. H., Vélez, F. J., & Torres, P. (2006). Analysis of photonic crystal fibers: Scalar solution and polarization correction. Optics Express. 14 (24). http://doi.org/10.1364/OE.14.011848

Crammond, G., Boyd, S. W., & Dulieu-Barton, J. M. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Engineering. 51 (12):1368-1378. http://doi.org/10.1016/j.optlaseng.2013.03.014

Darío Gómez, N., & Gómez, J. A. (2013). Effects of the speckle size on non-holographic fiber specklegram sensors. Optics and Lasers in Engineering. 51 (11): 1291-1295. http://doi.org/10.1016/j.optlaseng.2013.05.007

Efendioglu, H. S. (2017). A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distribution Sensing. IEEE Sensors Journal. 17 (7): 2055-2064. http://doi.org/10.1109/JSEN.2017.2658683

Fujiwara, E., Marques dos Santos, M. F., & Suzuki, C. K. (2017). Optical fiber specklegram sensor analysis by speckle pattern division. Applied Optics. 56 (6): 1585. http://doi.org/10.1364AO.56.001585

Fujiwara, E., Wu, Y. T., dos Santos, M. F. M., Schenkel, E. A., & Suzuki, C. K. (2017). Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique. Sensors and Actuators A: Physical. 263:677-686. http://doi.org/10.1016/j.sna.2017.07.031

Fujiwara, E., Wu, Y. T., & Suzuki, C. K. (2012). Vibration-based specklegram fiber sensor for measurement of properties of liquids. Optics and Lasers in Engineering. 50 (12): 1726-1730. http://doi.org/10.1016/j.optlaseng.2012.06.018

Gasvik, K. J. (2002). Optical Metrology (3rd ed.). Chichester, England: John Wiley & Sons Ltd.

Gianino, P. D., & Bendow, B. (1981). Calculations of stressinduced changes in the transverse refractive-index profile of optical fibers. Applied Optics. 20 (3): 430. http://doi.org10.1364/AO.20.000430

Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Improvement of the dynamic range of a fiber specklegram sensor based on volume speckle recording in photorefractive materials. Optics and Lasers in Engineering. 49 (3): 473-480. http://doi.org/10.1016j.optlaseng.2010.11.017

Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials.

Optics Communications. 284 (4): 1008-1014. http://doi.org/10.1016/j.optcom.2010.10.037

Gómez, J. A., & Salazar, Á. (2012). Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Optics and Lasers in Engineering. 50 (5): 812-815. http://doi.org/10.1016/j.optlaseng.2012.01.002

Gubarev, F., Li, L., Klenovskii, M., & Glotov, A. (2016). Speckle pattern processing by digital image correlation. MATEC Web of Conferences. 48: 4003. http://doi.org/10.1051/matecconf/20164804003

Hung, Y. Y. (1978). Displacement and strain measurement. In R. K. Erf (Ed.), Speckle metrology (pp. 51-71). New York:Academic Press, Inc.

Kumar, A., Varshney, R. K., Antony C, S., & Sharma, P. (2003). Transmission characteristics of SMS fiber optic sensor structures. Optics Communications. 219 (1-6): 215-219. http://doi.org/10.1016/S0030-4018(03)01289-6

Li, J., Cai, H., Geng, J., Qu, R., & Fang, Z. (2007). Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source. Applied Optics. 46 (17): 3572. http://doi.org/10.1364/AO.46.003572

Liu, Y., & Wei, L. (2007). Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Applied Optics. 46 (13): 2516-2519. http://doi.org/10.1364/AO.46.002516

Malki, A., Gafsi, R., Michel, L., Labarrère, M., & Lecoy, P. (1996). Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers. Applied Optics. 35 (25): 5198. http://doi.org/10.1364/AO.35.005198

Mase, G. T., & Mase, G. E. (1999). Continuum for Engineers. New York (2 Ed). Boca Raton: CRC Press.

R. Jones and C. Wykes. (1989). Holographic and Speckle Interferometry. Cambridge University Press. http://doi.org/10.1017/CBO9780511622465

Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M. (2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology. 33 (12): 2591-2597. http://doi.org/10.1109/JLT.2014.2364318

Saleh, B. E. a, & Teich, M. C. (1991). Fundamentals of Photonics (Vol. 5). New York, USA: John Wiley & Sons, Inc. http://doi.org/10.1002/0471213748

Torres, P., Aristizábal, V. H., & Andrés, M. V. (2011). Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential. Journal of the Optical Society of America B: Optical Physics. 28 (4). http://doi.org/10.1364/JOSAB.28.000787

Wang, B., Guo, R., Yin, S., & Yu, F. T. S. (2004). Chemical Sensing with Hetero-Core Fiber Specklegram. Journal of Holography and Speckle. 1 (1): 53-57. http://doi.org/10.1166/jhs.2004.008

Wang, B., Huang, C., Guo, R., & Yu, F. T. S. (2003). A novel fiber chemical sensor using inner-product multimode fiber speckle fields. In F. T. S. Yu, R. Guo, & S. Yin (Eds.), Proceedings of SPIE - The International Society for Optical Engineering (p. 299). http://doi.org/10.1117/12.515977

Wang, Y., Cai, H., Qu, R., Fang, Z., Marin, E., & Meunier, J.-P. (2008). Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure. Applied Optics. 47 (20): 3543. http://doi.org/10.1364/AO.47.003543

Wu, S., Yin, S., & Yu, F. T. S. (1991). Sensing with fiber specklegrams. Applied Optics. 30 (31): 4468. http://doi. org/10.1364/AO.30.004468

Yu, F. T. S., Wen, M., Yin, S., & Uang, C.-M. (1993). Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Applied Optics. 32 (25): 4685. http://doi.org/10.1364/AO.32.004685

Yu, F. T. S., & Yin, S. (2002). Fiber Optic Sensors. New York: Marcel Dekker, Inc.

Yu, F. T. S., Yin, S., Zhang, J., & Guo, R. (1994). Application of a fiber-speckle hologram to fiber sensing. Applied Optics. 33 (22): 5202. http://doi.org/10.1364/AO.33.005202

Yu, F. T. S., Zhang, J., Yin, S., & Ruffin, P. B. (1995). Analysis of a fiber specklegram sensor by using coupled-mode theory. Applied Optics. 34 (16): 3018. http://doi.org/10.1364/AO.34.003018

Zhang, Z., & Ansari, F. (2006). Fiber-optic laser speckleintensity crack sensor for embedment in concrete. Sensors and Actuators A: Physical. 126 (1): 107-111. http://doi.org/10.1016/j.sna.2005.10.002

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.