Chemical study of fraction ethyl acetate in the fungus Ganoderma lucidum, grown in agro-industrial waste.
PDF (Español (España))

Supplementary Files

Tabla 1S (Español (España))
Figura 1S (Español (España))
Figura 2S (Español (España))
Figura 3S (Español (España))
Figura 4S (Español (España))

How to Cite

Salgado Ordosgoitia, R. D., Arias Martínez, J. M., Acosta Chavez, A. D. C., Rodriguez - Manrique, J. A., & Pérez Pérez, M. F. (2016). Chemical study of fraction ethyl acetate in the fungus Ganoderma lucidum, grown in agro-industrial waste. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(157), 600–607. https://doi.org/10.18257/raccefyn.391

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Studies in fungi have revealed that they have a high nutritional value, proven pharmacological action of the secondary metabolites produced in their fruiting bodies, being many species studied, emphasizing among these, the macromycete Ganoderma lucidum, from which have been isolated compounds type terpenoids and its derivatives, with biological significance, showing effectiveness in the lowering blood pressure, anti-inflammatory properties, antiviral, hypoglycemic and immunoprotective. On the other hand, mushroom cultivation promotes the solution to environmental problems, since it can be done in agro-industrial wastes. The objective was to study the chemical composition of the fungus G. lucidum, grown in agro-industrial wastes and to determine differences between the metabolites obtained, with respect to those of the species of the fungus in their wild state. To do so, G. lucidum, was cultivated in agro-industrial wastes and the ethyl acetate fraction was studied, throught chromatography column thin layer chromatography, preparative thin-layer chromatography. In addition, GC-MS, NMR-1H, IR analysis techniques were done. The results and preparative indicated that the chromatographic separation allowed the characterization of 8 compounds. In general, it can be concluded that cultivated fungus, presents a composition of secondary metabolites similar to the reported by various researchers about the species in its wild state, establishing the majority compound corresponding to the Ganoderiol B. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

https://doi.org/10.18257/raccefyn.391
PDF (Español (España))

References

Arisawa, M., Fujita, A., Saga, M., Fukumura, H., Hayashi, T., Shimizu, Mineo., et al. (1986). Three New Lanostanoids from Ganoderma lucidum. J. Nat. Prod, 49 (4), 621–625.

Arisawa, M., Fujita, Akio., Hayashi, T., Shimizu, M., Morita, N., Kikuchi, T., et al. (1988). Revision of 1H- and 13C-nmr Assignments of Lanostanoids from Ganoderma lucidum by 2D-nmr Studies. J. Nat. Prod, 51 (1), 54-59.

Baby, S., Johnson, A. J., Govindan, B. (2015). Secondary metabolites from Ganoderma. Phytochemistry, 1, 66-101.

Bishop, K. S., Kao Chi, H. J., Yuanye, Xu., Glucina, M. P., Paterson R. R. M., Ferguson, L. R. (2015). From 2000 years of Ganoderma lucidum to recent developments. Phytochemistry, 1, 56-65.

Coy, E., Nieto, I. J. (2009). Sterol composition of the macromycte. Chem. Nat. Compd, 1,193-196. ­

Cuéllar, M. J., Giner, R. M., Recio, M. C., Just, M. J., Máñez, S., Ríos J. L. (1996). Two Fungal Lanostane Derivatives as Phospholipase A2 Inhibitors. J Nat Prod, 1, 977-979.

González, A. G., León, F., Rivera, A., Padrón, J. I., González Plata, J., Zuluaga, J. C., et al. (2002). New Lanostanoids from the Fungus Ganoderma concinna. J. Nat. Prod, 65 (3), 417-21.

González, A., Bermejo, J., Toledo, F. (1983). The steroids and fatty acids of the basidiomycete Scleroderma polyrhizum. Phytochemistry, 22 (4), 1049-1050.

González, A., León, F., Rivera, A., Muñoz, C. M., Bermejo, J. (1999). Lanostanoid Triterpenes from Ganoderma lucidum. J. Nat. Prod, 1, 1700-1701.

Gutiérrez, A., Caramelo, L., Prieto, A., Martínez, M. J., Martínez, A. T. (1994). Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Applied and Environmental Microbiology, 60 (6), 1783–1788.

Guzmán, G. (1999). Análisis cualitativo y cuantitativo de la diversidad de los hongos de México. La Diversidad Biológica de Iberoamerica Vol II. Acta Zoológica Mexicana, 1, 111-175.

Hernao, L. (1989). Notas sobre Afiloforales colombianos. Rev. Caldasia, 1, 23-36.

Lin, L-J., Shiao, M-S. (1988). Seven new triterpenes from Ganoderma lucidum. J. Nat. Prod, 1, 918-924.

Ma, H-T., Hsieh, J-F., Chen, S-T. (2015). Anti-diabetic effects of Ganoderma lucidum. Phytochemistry, 1, 109-113.

Manavalan, T., Manavalan, A., Thangavelu, K. P., Heese K. (2012). Secretome analysisof Ganoderma lucidum cultivated in sugarcane bagasse. J. Nat. Prod, 1, 298-309.

Martínez, Alejandro. (2002). Esteroles. Universidad de Antioquia; Facultad de Química Farmacéutica. Medellin – Colombia.

Masao, H., Isao, A., Chieko, I., Tsutomu, F., Motoo, S. (1987). Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum. Phytochemistry, 1, 2797-2803.

Moreno, H., Martínez, A., Fujimoto, Y. (2011). Aislamiento e identificación de dos esteroles y un triterpenoide del cuerpo fructífero de Ganoderma lucidum cultivado en Colombia. Vitae, 1, 11-15.

Morigiwa, A., Kitabatake, K., Fujimoto, Y., Ikekawa, N. (1986). Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull, 34 (7), 3025-3028.

Nieto, I. J., Valencia, M. A. (2001). Esteroles, Ácidos Grasos e Hidrocarburos de Los Cuerpos Fructíferos De Ganoderma australe. Bol. Soc. Chil. Quím, 47 (4), 511-516.

Peng, X-R., Liu, J-Q., Wang, C-F., Li, X-Y., Shu, Y., Zhou, L., et al. (2014). Hepatoprotective Effects of Triterpenoids from Ganoderma cochlear. J. Nat. Prod, 1, 737-743.

Rodríguez, V. N. (2000). Investigación básica sobre el cultivo de hongos tropicales en residuos agroindustriales de la zona cafetera colombiana. Chinchiná, Cenicafé (experimento QIN-6-01), disciplina de Química Industrial, p. 90.

Shiao, M-S., Lin, L-J., Yeh, S-F. (1988). Triterpenes from Ganoderma lucidum. Phytochemistry, 1, 2911-2914.

Suárez, C., Nieto, I. (2013). Cultivo biotecnológico de macrohongos comestibles: una alternativa en la en la obtención de Nutracéuticos. Revista Iberoamericana de Micología, 30 (1), 1-8.

Varón, M. 2003. Cultivo de hongos tropicales agroindustriales del Departamento del Tolima (Tesis de pregrado). Universidad del Tolima, Facultad de Ciencias Básicas. Tolima-Colombia.

Yapita, Y., Endo, M., Tani, Y., Machida, K., Amemiya, K., Furumura, K., et al. (1999). Sterol Constituents from Seven Mushrooms. Chem. Pharm. Bull, 47(6), 847- 851.

You, B-J., Chang, W-T., Chung, K-R., Kuo, Y-H., Yang, C-S., Tien, Ni., et all. (2012). Effect of solid-medium coupled with reactive oxygen species on ganoderic acid biosynthesis and MAP kinase phosphorylation in Ganoderma lucidum. Food Res. Int, 1, 634-640.

Yue, J-M., Chen, S.N., Lin, Z-W., Sun, H-D. (2001). Sterols from the fungus Lactarium volemus. Phytochemistry, 1, 801-806.

Zhao, Y-Y., Zhang, L., Mao, J-R., Cheng, X-H., Lin, R-C., Zhang, Y., et al. (2011). Ergosta-4,6,8(14),22-tetraen-3-one isolated from Polyporus umbellatus prevents early renal injury in aristolochic acid-induced nephropathy rats. J. Pharm. Pharmacol, 1, 1581-1586.

Zhou, Z.Y, Tan, J.W y Liu, J.K. (2011). Two new polyols and a new phenylpropanoid glycoside from the basidiomycete Lactarius deliciosus. Fitoterapia, 82, 1309-1312.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2016 Journal of the Colombian Academy of Exact, Physical and Natural Sciences