Mixed effect of salinity and cadmium exposure on physiological responses in Isognomon alatus (Bivalvia: Isognomonidae)
PDF (Español (España))

Supplementary Files

Figura 2S. Montaje del experimento para la medición de la tasa de consumo de oxígeno. Se observan los tanques de agua con cada una de las salinidades establecidas y las cámaras respirométricas cerradas de flujo continuo en las cuales se colocar (Español (España))
Figura 1S. Montaje de los experimentos para la medición de la tasas de filtración y excreción de amonio (Español (España))

How to Cite

Polo-Osorio, J. M., & Campos, N. H. (2016). Mixed effect of salinity and cadmium exposure on physiological responses in Isognomon alatus (Bivalvia: Isognomonidae). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(157), 629–636. https://doi.org/10.18257/raccefyn.359

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

We evaluated the mixed effect of changes in salinity and cadmium exposure on the physiological responses of Isognomon alatus, considered as potential biomonitoring species for its abundance and resistance to salinity changes, temperature and pH. Two hundred individuals were taken to the laboratory and acclimated for one month at salinities of 36, 27 and 18 UPS. In each experiment we used two salt shocks and a salinity control. To determine the effect of cadmium the experiment was performed once with free water and then with metals at a non-lethal concentration of 1 μg/L of cadmium chloride. We evaluated the differences in physiological responses based on filtration rates, respiration and ammonia excretion between controls and groups receiving saline shocks. We found differences both in the individual effect of saline shocks and in the exposure to cadmium; we also found an important synergistic effect, which led us to conclude that the species response as biomonitor depends on the conditions of salinity and ecosystem dynamics. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.
https://doi.org/10.18257/raccefyn.359
PDF (Español (España))

References

Akberali, H.B & Trueman, E.R. 1985. Effects of environmental stress on marine bivalve molluscs. En Advances in Marine Biology, Blaxter J.H.S. Russel, F.S. & Younge, M (eds). Academic Press, New York. 22: 101-198.

Almeida, E. A., Bainy, A.C.D, Medeiros, M.H.G, Di Mascio, P. 2003. Effects of trace metal and exposure to air on serotonin and dopamine levels in tissues of the mussel Perna perna. Marine Pollution Bulletin. 46: 1485-1490.

Allen, S.E., Parkinson, J.A, Rowland, A.P. 1989. Pollutants. En: O. Mead (editores). Chemical Analysis of Ecological materials. Blackwell Publications, Oxford, England. p. 201-239.

Baqueiro, C.E., Aldana-Aranda, D., Sevilla, M.L., Rodríguez-Espinosa, P.F. 2007. Variations of gametogenic and spawning patterns of the oyster Crassostrea virginica (Gmelin, 1971). Pueblo Viejo Lagoon, Veracruz, México. Transitional Waters Bulletin. 2: 37-46.

Campos, N.H. 1987. Los metales pesados, su contaminación y sus efectos tóxicos. Revista de Contaminación Ambiental. 9(17): 63-70.

Campos, N.H. 1988. Selected bivalves for monitoring of heavy metal contamination in the Colombian Caribbean. Springer Berlin Heidelberg. p. 270-275.

Chandran, V. 2002. Intracellular osmoregulation in the estuarine mollusc Villorita cyprinoides var. cochinensis (Mollusca:Bivalvia) Hanley. Doctoral dissertation. Department of Marine Biology, Microbiology and Biochemistry. Faculty of Marine Sciences. Kochi, India.

Chung, K.S. 1978. Cadmium tolerance of the white mullet Mugil curema and its use to predict survival, probability in polluted sea waters. Bol. Inst. Oceanogr. Oriente. 17 (1-2): 105-107.

Ciocan, C.M. & Rotchel, J.M.l. 2004. Cadmium induction of metallothionein isoforms in juvenile and adult mussel Mytilus edulis. Environ. Sci. Tech. 38: 1073-1078.

Daniels, W. W. 2005. Bioestadística. Base para las ciencias de la salud. Editorial Limusa, S.A. de C.V. Grupo Noriega Editores. México, D.F. p. 141.

Friberg, L., Kjellstrom, T., Nordberg, G.F. 1986. Cadmium. Handbook on the toxicology of metals, 2nd edition, Elsevier Science Publishers, Amsterdam, New York. P 342.

Garay, J.A., Marín, B., Calvano, N., Ramírez, G., Troncoso, W., Medina, O.L. 2001. Diagnóstico y evaluación de la calidad ambiental marina en el Caribe y Pacífico colombiano. Red de vigilancia para la protección y conservación de la calidad de las aguas marinas y costeras. Tomo II. Informe Final. INVEMAR. p 82.

Hanke, W., Hamdorf, K., Horn, E., Schlieper, C. 1977. Praktikum der Zoophysiologie. Gustav Fisher Verlag, Stuttgart. 350.

INVEMAR. 2003. Manual de técnicas analíticas para la determinación de parámetros físico químicos y contaminantes marinos. (Aguas, sedimentos y organismos). Instituto de Investigaciones Marinas y Costeras. Programa de Calidad Ambiental Marina (CAM). p. 40

INVEMAR. 2004. Programa nacional de investigación, evaluación, prevención, reducción y control de fuentes terrestres y marinas de contaminación marina. En prensa.

Ismail, A. 2006. The use of intertidal mollusks in the monitoring of heavy metals and organotin compounds in the west coast of Peninsular Malaysia. Coastal and Marine Science. 30 (1): 401-406.

Lemus, M., Marín, L., Aponte, Chung, K. 2012. Metalotioninas, glutación y consumo de oxígeno en el bivalvo Perna viridis expuesto al cadmio. Revista Científica, FCV-LUZ. XXII, 4: 376-382.

Lewis, A. G. 1990. The biological importance of copper. A literature review. Final report INCA project No. 223. Disponible en: http://scirus.landingzone.nl/other ?q=Type%20your%20own%20search%20here.

Livingstone, D.R., Widdows, J., Fieth, P. 1979. Aspects of nitrogen metabolism of the common mussel Mytilus edulis: Adaptation to abrupt and fluctuating changes in salinity. Marine Biology. 53: 41-55.

Manjarréz, G., Castro-Angulo, I., Utría-Padilla, L. 2008. Bioacumulación de cadmio en ostras de la bahía de Cartagena. Revista Ingenierías Universidad de Medellín. 7(13): 11-20.

Matsushima, O., Katayama, H., Yamada, K. 1987. The capacity of intracellular osmoregulation mediated by free amino acids in three bivalve molluscs. Journal of Experimental Marine BioIogy and Ecology. 109: 93-99.

Mohan C.V., Gupta T.R.C., Shetty H.P.C., Menon N.R. 1986. Combined toxicity of mercury and cadmium to the tropical green mussel Perna viridis. Diseases of aquatic organisms. 2: 65-72.

Morillo, N. & Belandria, J.C. (2006). Utilización de moluscos bivalvos para el tratamiento de efluentes en granjas camaroneras. Serie: INIA Divulga (Venezuela). 8: 47-50.

Navarro, J.M. & González C.M. (1998). Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture. 167: 315-327.

Sadiq, M. 1992. Heavy metals. En: Toxic metal chemistry in marine environments. Marcel Dekker, Inc. New York, 390 p.

Salanki, J. 1965. Oxygen level as a specific regulator of the rhythrmc activity of freshwater mussel Anodonta cygenea. Acta biologica Academiae Scientiarum Hungaricae. 15: 299-310.

Salanki, J. 1968. Role of cerebral ganglia in the regulation of activity in freshwater mussel Anodonta cygnea. En Salanlu, J. (editor). Neurobiology of invertebrates. Akade ‘miai Kiado’, Budapest. p. 493-501.

Sokolova, I. M., A., Ringwood, H., Johnson, C. 2005. Tissuespecific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica. Gmelin (Bivalvia: Ostreidae). Aquat. Toxicol. 74: 218-228.

Theede, H. & Schoslz, N. 1982. Anreicherung und schadwirkung von cadmium beimeerestieren naturw. rdsch. 35 (7): 286-292.

Vernberg, J. F. 1983. Respiratory adaptations. En: Bliss, D. (editor). The biology of crustacean: Internal anatomy and physiological regulation. New York: Academy press. 8: 1-43.

Winkler, L. 1988. The determination of dissolved oxygen in water. Berlin. Deutschen Chemischen Gesellschaft. 21: 28-43.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2016 Journal of the Colombian Academy of Exact, Physical and Natural Sciences