PHYSICAL AND MATHEMATICAL CHARACTERIZATION OF HIGH-BINDING MSA-2 PEPTIDES APPLICATION OF PROBABILITY THEORY AND ENTROPY
PDF (Español (España))

How to Cite

Rodríguez, J., Correa, C., Prieto, S., Cardona, D., Vitery, S., Puerta, G., … Bernal, P. (2009). PHYSICAL AND MATHEMATICAL CHARACTERIZATION OF HIGH-BINDING MSA-2 PEPTIDES APPLICATION OF PROBABILITY THEORY AND ENTROPY. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 33(129), 549–558. https://doi.org/10.18257/raccefyn.33(129).2009.2837

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

MSA-2 protein surface of membrane 2 of the merozoite is a protein of 45-kDa anchored in the membrane of the merozoite which has been associated with the development of protective immunity against the malaria.

By means of the construction of the space of probability the possibility of appearance of the 20 amino acids was quantified in each position for peptides with size of 20 residues; for 25 sequences overlapped each 10 amino acids of the protein MSA-2, starting from this space was calculated the probability, summary of probability and entropy for all the sequences, with the purpose of differing of objective and reproducible form the peptides of high binding and low binding, by means of physical and mathematics theories.

The values of probability, summary of Probability and Entropy for the proven experimentally sequences of high binding vary among the ranges associated to the binding macro state, while all these same values for the experimental low binding peptides are outside of the ranges associated to the binding macro. The values of probability, summary of probability and entropy differentiate the high binding peptides from low binding peptides, guessing right in 100% of the studied cases, according to experimental studies.

This methodology facilitates the experimental work, because it can be useful to predict high binding peptides of objective and reproducible way in the MSA-2 protein, the binding phenomenon of MSA-2 to merozoite presents a physical and mathematical order, starting from the probability and the entropy.

https://doi.org/10.18257/raccefyn.33(129).2009.2837

Keywords

probability | entropy | erythrocyte | MSA-2 | high binding
PDF (Español (España))

References

A. Matvéev. Física molecular, MIR, Moscú, 1987.

A. Mood, F. Graybill y D. Boes. Introduction to the theory of statistics, 3rd Ed, Mc. Graw-Hill, Singapore, 1974.

B. Fenton, J.T. Clark, C.F. Wilson, J.F. McBride y D. Walliker. Polymorphism of a 35±45 Kda Plasmodium falciparum merozoite surface antigen, Mol. Biochem. Parasitol. 34 (1989) 79-86.

B. Zhao, K. Sakharkar, C. Lim, P. Kangueane y M. Sakharkar, MHC-Peptide binding prediction for epitopes based vaccine design, IJIB 2 (2007) 127-140.

C. Lundegaard, O. Lund, C. Kes, S. Brunak y M. Nielsen. Modeling the adaptive immune system: predictions and simulations, Bioinformatics 23 (24) (2007) 3265-3275.

E. Froden y J. Royo. Entropía e Información, Universidad de Chile, Facultad de Ciencias, in Internet: http://fisica.ciencias.uchile.cl/ ~gonzalo/cursos/termo_II-04/seminarios/alumnos/EntropiaInfo_ Frodden-Royo04.pdf

F. Rañada. Orden y Caos, Introducción, Prensa científica, Barcelona, 1990.

G.E. Meister, Caroline G.P Roberts, Jay A. Berzofsky y Anne S. De Groot. Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences, Vaccine (1995) Volume 13 Number 6, 581-591.

H.A. Stanley, R.F. Howard y R.T. Reese. Recognition of a Mr 56K glycoprotein on the surface of Plasmodium falciparum merozoites by mouse monoclonal antibodies, J. Immunol. 134 (1985) 3439- 3444.

H.G. Heidrich, W. Strych y J.E. Mrema. Identification of surface and integral antigens from spontaneously released Plasmodium falciparum merozoites by radioionidation and metabolic labeling, Z. Parasitenkd 69 (1983) 715-725.

P. Prehm. Spontaneously released Plasmodium falciparum merozoites from culture possess glycoproteins, Z. Parasitenkd. 70 (1984) 747-751.

J. Rodríguez Velásquez. Teoría de conjuntos aplicada a la caracterización matemática de unión de péptidos al HLA clase II, Rev Cienc Salud 1 (2008b) 9-15.

J. Rodríguez. Caracterización física y matemática de péptidos de alta unión de MSP-1 mediante la aplicación de la teoría de la probabilidad y la entropía. Archivos de Alergia e Inmunología Clínica 39 (2008a) 2:74-82.

J. Rodríguez. Comportamiento fractal del repertorio T específico contra el alergeno Poa P9, Rev. Fac. Med. Univ. Nac. Colomb. 53 (2) (2005) 72-8.

J. Rodríguez. Diferenciación matemática de péptidos de alta unión de MSP-1 mediante la aplicación de la teoría de conjuntos, Inmunología 27 (2) (2008c) 63-68.

J. Rodríguez. Teoría de unión al HLA clase II, Teoría de la probabilidad combinatoria y entropía aplicadas a secuencias peptídicas, Inmunología 27 (4) (2008d) 151-166.

J.A. Lyon, A.W. Thomas, T. Hall y J.D. Chulay. Specificities of antibodies that inhibit merozoite dispersal from malaria infected erythrocytes, Mol. Biochem. Parasitol. 36 (1989) 77-86.

J.A. Lyon, J.D. Haynes, C.L. Diggs, J.D. Chulay y J.M. Pratt-Rossiter. Plasmodium falciparum antigens synthetized by schizonts and stabilized at the merozoite surface when schizonts mature in the presence of protease inhibitors, J. Immunol. 136 (1986) 2252-2257.

J.T. Clark, S. Donachie, R. Anand, C.F. Wilson, H.G. Heidrich y J.S. McBride. 46 ± 53 Kilodalton glycoprotein from the surface of Plasmodium falciparum merozoites, Mol. Biochem. Parasitol. 32 (1989) 15-24.

L. Blanco. Probabilidad, notas de clase, Universidad Nacional de Colombia, Departamento de Matemáticas y Estadística, 1996.

M. Aikawa, L.H. Miller, J. Johnson y J. Rabbege. Erythrocyte entry by malarial parasites, J. Cell. Biol. (1978) 77-72.

M. Ocampo, M. Urquiza, F. Guzmán, L.E. Rodriguez, J. Suarez, H. Curtidor, J. Rosas, M. Diaz y M.E. Patarroyo. Two MSA2 peptides that bind to human red blood cells are relevant to Plasmodium falciparum merozoite invasion, J. Peptide Res. 55 (2000) 216-223.

P. Laplace. Ensayo filosófico sobre las probabilidades, Altaya, Barcelona, 1995.

R. Ramasamy. Studies on glycoproteins in the human malaria parasite Plasmodium falciparum. Identification of a myristilated 45 Kda merozoite membrana glycoprotein. Immunol. Cell. Biol. 65 (1987) 419-424.

R. Tolman, Principles of statistical mechanics, Dover, New York, 1979.

R.J. Epping, S.D. Goldstone, L.T. Ingram, et al. An epitope recognized by inhibitory monoclonal antibodies that react with a 51 kilodalton merozoite surface antigen in Plasmodium falciparum, Mol. Biochem. Parasitol. 28 (1988) 1-10.

R.P. Feynman, R.B. Leighton y M. Sands. Física, La teoría cinética de los gases, Vol. 1, Addison-Wesley Iberoamericana, Wilmington, 1964b, pp. 39-1, 39-16.

R.P. Feynman, R.B. Leighton y M. Sands. Física, Leyes de la Termodinámica, Vol. 1, Addison-Wesley Iberoamericana, Wilmington, 1964c, pp. 44-1, 44-19.

R.P. Feynman, R.B. Leighton y M. Sands. Física, Probabilidad, Vol. 1, Addison-Wesley Iberoamericana, Wilmington, 1964a, pp. 6-1, 6-16.

T.J. Hadley, F.W. Klotz, y L.H. Miller. Invasion or erythrocytes by malaria parasites: a cellular and molecular overview, Ann. Rev. Microbiol. (1986) 40:451.

World Health Organization, United Nations Children’s Fund, World Malaria Report, Geneva, 20.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.