Electrical transport properties of Cu2ZnSnSe4 thin films for solar cells applications
PDF

How to Cite

Seña, N. J., Dussan Cuenca, A., & Gordillo Guzmán, G. (2024). Electrical transport properties of Cu2ZnSnSe4 thin films for solar cells applications . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(Suplemento), 22–26. https://doi.org/10.18257/raccefyn.2577

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work we study the electrical transport properties of Cu2ZuSnSe4 (CZTse) thin films. CZTSe thin films were prepared by PVD method; the parameters of deposition as substrate temperature (T,) and mass, (Mx), (Mx = ZnSe, Cu) were varied for a range wide. Conductivity and resistivity measurements as a function of temperature were obtained between 120 and 400 K. It was observed, that high-temperature range above room temperature (>300 K) the carrier transport is thermally activated, with a single activation energy that changes with the variation of T, and Mx. In the low-temperature range (<300 K)), variable range hopping (VRH) was established as a predominant electronic transport mechanism for all samples. Hoppmg parameters were obtained by Difíusinal model and percolation theory.

https://doi.org/10.18257/raccefyn.2577

Keywords

Semiconductors | Blectrical properties | VRH
PDF

References

Brammertz G., Ren Y., Buffiére M., Mertens S., Hendrickx J., Marko H., Zaghi A., Lenaers N., Kóble Ch., Vieugels J., Meuris M., Poortmans J., 2013. Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers. Thin Solid Films, 535: 348-352.

Dussan A., Buitrago R. H., 2005. Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. J. Appl. Phys., 97: 15.

Fahrettin Y., 2011. Nanostructure Cu2ZnSnS4 thin film prepared by sol-gel for optoelectronic applications. Sol. Energy, 85: 2518-2523.

Guo Q. J., Ford G. M., Yang W. Ch., Charles J. H., Hugh W. H., Rakesh A., 2012. Enhancing the performance of CZTSSe solar cells with Ge alloying. Sol. Energy Mater. Sol. Cells, 105: 131-136.

Ji L. Tuteng M., Ming W., Weifeng L., Guoshun J., Changfei Z., 2012. Appl. Surf. Sci., 258: 6261-6265.

Kuo D., Tsega M., 2014. The investigation of Cu2ZnSnSe4 bulks with x = 1.4-2.2 for debating the Cu excess and Cu deficiency used in thin-film solar cells. Mater. Res. Bull., 49: 608-613.

Lechner R., Jost S., Palm J., Gowtham M., Sorin F., Louis B., Yoo H., Wibowo R. A., Hock R., 2013. Cu2ZnSn(S,Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors. Thin Solid Films, 535: 5-9.

Lee S. M., Mohanty B. Ch,, Jo Y. H., Yong S. Ch., 2013. Phase development, microstructure and optical properties of Cu2ZnSnSe4 thin films modified with Pb and Ti. Surf. Coat. Technol., 231: 389-393.

Lin S, Jun H., Hui K., Fangyu Y, Pingxiong Y, Junhao Ch., 2011. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Sol. Energy Mater. Sol. Cells, 95: 2907-2913.

Mott N. E., 1969. Conduction in non-crystalline materials 11. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag., 19: 835-852.

Redinger A., Mousel M., Djemour R., Giltay L., Valle N., Siebentritt S., 2013. Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer. Prog. Photovolf Res. Appl., DOI: 10.1002/pip.2324.

Salomé P.M.P., Fernandes P.A., Da Cunha A.F., 2009. Morphological and structural characterization of Cu2ZnSnS4 thin films grown by selenization of elemental precursor layers. Thin Solid Films, 517: 2531-2534.

Sena N., 2013. Tesis MSe: Caracterización eléctrica y estudio de las propiedades de transporte del compuesto Cu2ZnSnSe4 para ser usado como capa absorbente en celdas solares. Universidad Nacional de Colombia. Bogotá-Colombia.

Thamilselvan M., Premnazeer K., Mangalaraj D., Narayandass S. K., 2003. Field and temperature-dependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Phys. B, 337: 404-412.

Xie B, Tian C., Li W, Feng L., Zhang J., Wu L., Cai Y., Let Z, Yang Y., 2010. Preparation of p-type CdS thin films and in situ dark conductivity in vacuum deposited CdS:Cu films. Appl. Surf. Sci., 257: 1623-1627.

Yilmaz. S., Turkoglu 0., Belenli L., 2007. Synthesis of B-Phase (Bi2O3)x(Dy2O3) (0.01

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 https://creativecommons.org/licenses/by-nc-nd/4.0