EFFECT OF THE SPATIAL CURVATURE OF THE UNIVERSE ON THE ANGULAR SPECTRUM OF THE TEMPERATURE ANISOTROPIES IN THE COSMIC BACKGROUND RADIATION
PDF (Español (España))

How to Cite

Mariño, G. A., & Rodríguez, Y. (2023). EFFECT OF THE SPATIAL CURVATURE OF THE UNIVERSE ON THE ANGULAR SPECTRUM OF THE TEMPERATURE ANISOTROPIES IN THE COSMIC BACKGROUND RADIATION. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 32(124), 373–379. https://doi.org/10.18257/raccefyn.32(124).2008.2300

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Métricas Alternativas


Dimensions

Abstract

The inflationary paradigm solves the three classical problems in standard cosmology: the flatness problem, the horizon problem, and the unwanted relics problem. In particular the flatness problem is solved by explaining how the relative contribution of the spatial curvature of the Universe to the total energy density decreases exponentially during inflation. In addition, the inflationary scenario offers us an efficient mechanism to generate small perturbations in the spatial curvature that would explain the observed temperature anisotropies in the cosmic microwave background radiation (CMB). The traditional inflationary models that neglect the relative contribution reproduce the recent observations from the WMAP satellite on the angular spectrum C1 of the temperature anisotropies in the CMB, except for the lower multipoles, and specially for the quadrupole (l = 2) for which the observed value presents an unexpected fati. Such a strange behaviour leads us to analyze the angular spectrum C1 on large scales (low multipoles) taking into account the relative contribution. We determine in this way the type of characteristic curvature of the observed Universe most favoured by the observational data regarding the quadrupole.

https://doi.org/10.18257/raccefyn.32(124).2008.2300

Keywords

Spatial curvature of the Universe | anomalies in the cosmic microwave background
PDF (Español (España))

References

Abbott L.F. & Schaefer R.K., 1986. A general, gauge-invariant analysis of the cosmic microwave anisotropy, Astrophys. J. 308, 546.

Abramo L.R., Sodre Jr. L., & Wuensche C.A., 2006. Anomalies in the low CMB multipo1es and extended foregrounds. Phys. Rev. D 74, 083515.

Bardeen J.M., 1980. Gauge invariant cosmo1ogical perturbations. Phys. Rev. D 22, 1882.

Dodelson S., 2003. Modem cosmology. Academic Press, San Die­go USA.

Efstathiou G., 2003. Is the low CMB quadrupole a signature of spatial curvature?. Mon. Not. R. Astron. Soc. 343, L95.

Enqvist K. & Sloth M.S., 2002. Adiabatic CMB perturbations in pre big-bang string cosmology. Nucl. Phys. B 626, 395.

Harrison E. R., 1967. Normal modes of vibrations ofthe Universe. Rev.Mod.Phys.39,862.

Hinshaw G. et. al., 2008. Five-Year Wilkilson Microwave Aniso­tropy Probe (WMAP) observations: data processing, sky maps, & basic results, arXiv: 0803. 0732 [astro-ph].

Jaffe T.R. et. al., 2005. Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological iso­tropy?. Astrophys. J. 629, Ll.

Jaffe T.R. et. al., 2006. On the viability of Bianchi type VIIh mo­dels with dark energy. Astrophys. J. 644,701.

Kesden M.H., Kamionkowski M., & Cooray A., 2003. Can cos­mic shear shed light on low cosmic microwave background multi­poles?. Phys. Rev. Lett. 91, 221302.

Kolb E. W. & Turner M.S., 1990. The early Universe. Addison­Wesley Publishing Company, Redwood City USA.

Komatsu E. et. al., 2008. Five-Year Wilkilson Microwave An­isotropy Probe (WMAP) observations: cosmological interpretation, arXiv:0803.0547 [astro-ph].

Liddle A.R. & Lyth D.H., 2000. Cosmological inflation and large­scale structure. Cambridge University Press, Cambridge UK. Lyth D.H., 1985.

Large-scale energy density perturbations and in­flation. Phys. Rev. D 31, 1792.

Lyth D.H. & Seery D., 2008. Classicality of the primordial pertur­bations. Phys. Lett. B 662,309.

Lyth, D.H., Ungarelli C., & Wands D., 2002. The primordial den­sity perturbation in the curvaton scenario. Phys. Rev. D 67, 023503. Lyth D.H. & Wands D., 2002. Generating the curvature perturba­tion without an inflaton. Phys. Lett. B 524, 5.

Mariño G.A. & Rodríguez Y., 2008. In preparation.

Massó E. et. al., 2006. Imprint of spatial curvature on inflation po­wer spectrum. arXi v: astro-ph/060934 9v4.

Moroi T. & Takahashi T., 2001. Effects of cosmological moduli fields on cosmic microwave background. Phys. Lett. B 522, 215; Erratum ibid 2002. B 539, 303.

Moroi T. & Takahashi T., 2004. Correlated isocurvature fluctua­tion in quintessence and suppressed CMB anisotropies at low mul­ti poles. Phys. Rev. Lett. 92, 09130 l.

Mukhanov V.F., 2005. Physical foundations of cosmology. Cam­bridge University Press, Cambridge UK.

Mukhanov V.F., Feldman H.A., & Brandenberger R.H., 1992. Theory of cosmological perturbations. Part 1. Classical perturba­tions. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203.

Nolta M.R. et. al., 2008. Five-Year Wilkilson Microwave An­isotropy Probe (WMAP) observations: angular power spectra, arXiv:0803.0593 [astro-ph].

Piao Y.-S., Tsujikawa S., & Zhang X.-M., 2004. Inflation in string inspired cosmology and suppression of CMB low multi poles. Class. Quantum Grav. 21, 4455.

Sachs R.K. & Wolfe A.M., 1967. Perturbations of a cosmological model and angular variations of the microwave background. As­trophys. J. 147, 73.

Weinberg S., 2008. Cosmology. Oxford University Press, Oxford UK.

Yamazaki D.G. et. al., 2008. Effects of a primordial magnetic field on low and high multipoles ofthe CMB. Phys. Rev. D 77, 043005.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales