Abstract
This work is addressed to the process of modeling, simulation and testing a platinum microelectrode array manufactured in microsystems technology and designed to be applied on bioparticle manipulation. This manipulation is performed by means of non uniform electric fields generated with interdigitated electrodes of 70 mm in size, which can originate the common dielectrophoresis phenomenon. Distributions of potential, electric field and dielectrophoretic force were calculated employing the finite element method. Furthermore, the most relevant results related to manipulation of polystyrene microparticles are also reported.
Keywords
References
Ahn C., J. Choi, G. Beaucage, J. Nevin, J. Lee, A. Puntambekar & J. Lee. 2004. Disposable smart lab-on-a-chip for point-of-care clinical diagnostics. Proceedings of the IEEE 92: 154-163.
Becker F., X-B. Wang, Y. Huang, R. Pethig, J. Vykoukal & P. Gascoyne. 1994. The removal of human leukaemia cells from blood using interdigitated microelectrodes. Journal of Physics D: Applied Physics 27: 2659-2662.
Carmona M., S. Marco, J. Samitier, M. Acero, J. Plaza & J. Esteve. 1999. Modelling of silicon passive microvalves. The 13th European Conference on Solid-State Transducers EUROSEN-SORS XIII. September 12-15, 1999. The Hague. The Netherlands. 721-724.
Eaton W. & J. Smith. 1997. Micromachined pressure sensors: review and recent developments. Smart Mater. Struct. 6: 530-539.
Fernández F. & J. Samitier. 1999. Cell handling using microsystems. 2 day course on New Technologies in Biomedical Engineerin and Ethical Issues, EURO-BME’99. April 8-9, 1999. Barcelona, España. 94-114.
Fuhr G., H. Glasser, T. Müller & T. Schnelle. 1994. Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media. Biochimica et Biophysica Acta 1201:353-360.
Fuhr G., T. Müller, T. Schnelle, R. Hagedorn, A. Voigt & S. Fiedler. 1994a. Radio-frequency microtools for particle and living cell manipulation. En: Naturwissenschaften 81: 528-535.
Fuhr G., T. Schnelle, T. Müller, H. Glasser, T. Lisec & B. Wagner. 1995. Positioning and manipulation of cells and microparticles using miniaturized electric field traps and travelling waves. Sensors and materials 7: 131-146.
Gascoyne P. Y J. Vikoukal. 2004. Dielectrophoresis-based sample handling in general-purpose programmable diagnostics instruments. Proceedings of the IEEE 92: 22-42.
Haga Y. & M. Esashi. 2004. Biomedical microsystems for minimally invasive diagnosis and treatment. Proceedings of the IEEE 92:98-114.
Holmes D., N. Green & H. Morgan. 2003. Microdevices for dielectrophoretic flow-through cell separation. IEEE in Medicine and Biology Magazine 22: 85-90.
Hoummadi L., A. Campitelli & W. Wlodarski. 1997. Acoustic wave sensors: design, sensing mechanisms and applications. Smart Mater. Struct. 6:647-657.
Huang Y., R. Hölzel, R. Pethig & X-B. Wang. 1992. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Physics in Medicine and Biology 37:1499-1517.
Kim J., V. Varadan, V. Varadan & X. Bao. 1996. Finite element modeling of a smart cantilever plate and comparison with experiments. Smart Mater. Struct. 5: 165-170.
Kohnke, P. 1995. ANSYS Theory Reference Manual release 5.5. Swanson Analysis Systems Inc.
Müller T., A. Gerardino, T. Schnelle, S. Shirley, G. Fuhr, G. De Gasperis, R. Leoni & F. Bordoni. 1995. High-frequency electric-field trap for micron and submicron particles. Il Nuovo Cimento 17 D: 425-432.
Müller T., A. Gerardino, T. Schnelle, S. Shirley, F. Bordoni, G. De Gasperis, R. Leoni & G. Fuhr. 1996. Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodinamic forces. J. Phys. D: Appl. Phys. 29: 340-349.
Müller T., A. Pfennig, P. Klein, G. Gradl, M. Jäger & T. Schnelle. 2003. The potential of dielectrophoresis for single-cell experiments. IEEE in Medicine and Biology Magazine 22:51-61.
Pethig R., M. Talary & R. Lee. 2003. Enhancing traveling-wave dielectrophoresis with signal superposition. IEEE in Medicine and Biology Magazine 22: 43-50.
Pohl H. A. 1951. The motion and precipitation of suspendoids in divergent electric fields. J. of Appl. Phys. 22: 869-871.
Pohl H. A. 1958. Some effects of nonuniform fields on dielectrics. En: J. Appl. Phys. 29: 1182-1188.
Pohl H. A. & R. Pethig. 1977. Dielectric measurements using non-uniform electric field (dielectrophoretic) effects. J. Phys. E: Sci. Instrum. 10: 190-193. Corrigendum 883.
Price J., J. Burt & R. Pethig. 1988. Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms. Biochimica et Biophysica Acta 964:221-230 .
Quinn C., G. Archer, W. Betts & J. O’neill. 1996. Dose-dependent dielectrophoretic response of Cryptosporodium oocysts treated whit ozone. Letters in Applied Microbiology 22: 224-228.
Rebello K.. 2004. Applications of MEMS in surgery. Proceedings of the IEEE 92: 43-55.
Reed M. & W. Lye. 2004. Microsystems for drug and gene delivery. Proceedings of the IEEE 92: 56-75.
Renard S. 2000. Industrial MEMS on SOI. J. Micromech. Microeng. 10: 245-249.
Roulet J., R. Volkel, H. Herzig, E. Verpoorte & R. Dandliker. 2001. Fabrication of multiplayer systems combining microfluidics and microoptical elements for fluorescence detection. Journal of Microelectromechanical Systems 10:482-491.
Schnelle T., R. Hagedorn, G. Fuhr, S. Fiedler & T. Müller. 1993. Three-dimensional electric field traps for manipulation of cells-calculation and experimental verification. Biochimica et Biophysica Acta 1157: 127-140.
Wise K., D. Anderson, J. Hetke, D. Kipke & K. Najafi. 2004. Wireless implantable Microsystems: high-density electronic interfaces to the nervous system. Proceedings of the IEEE 92:76-97.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales