Abstract
Known results on permutation polynomials with coefficients in a finite field are extended to algebras of the form Lv=K[X]/(p(X)v)), where K is a finite field, p(X) belongs to K[X] and is an irreducible polynomial, v = 1,2..., and to the algebra of power series L[[Z]]. Finally analogues of Dickson polynomials in these algebras are studied.
Keywords
References
Albis, V. S. Polinomios de permutation. Algunos problemas de interés, Lecturas Matemáticas 22 (2001), 35-58.
Albis, V. S. & Chaparro, R. On a conjecture of Borevich and Shafarevich, Rev. Acad. Colomb. Cienc. 21 (1997), 313-319. [MR: 98g:11130].
Daqing, W. Permutation binomials over finite fields, Acta Math. Sinica. 10 (1994), 30-35. [MR: 94m:11145].
Dickson, L. E. Linear Groups with an Exposition of the Galois Field Theory. Dover Publi: New York, 1958.
Fried, M. On a conjecture of Schur, Michigan Math. J..17 No. 1 (1970), 41-55. [MR: 41# 1688).
Greenberg, M. J. Lectures on Forms in Many Variables. W. A. Benjamin, New York, 1969.
Lidl, R. & Mullen, G. L When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Month. 95 (1988), 243-246.
Lidl, R. & Niederreiter, H. Finite Fields, Encycl. of Math and its Appl., Addison Wesley Pub. Comp. Reading Mass., 1983. [MR: 86c: 11106].
McDonald, B. R. Finite Rings with Identity, Marcel Dekker, New York, 1974.
Smits, T. H. On the group of units of GF(q)[X]/(a(X)). Indag. Math. 44 (1982), 355-358.
Sun, Q. A note on permutation polynomials vectors over Z/mZ, Adv. Math. (China) 25 No. 1 (1996), 311-314. [In Chinese] [MR: 98h:11157].
Zhang, Q. On the polynomials in several indeterminates which on be extended to permutation polynomial vector over Z/p/Z, Adv. Math. 22 No. 3 (1993), 456-457.
Zhang, Q. Permutation polynomials in several indeterminates over Z/mZ, Chinese Ann, Math. Ser. A. 16 No. 2 (1995), 168-172. [In Chinese] [MR: 96g: 11143].
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0