A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system
PDF (Español (España))

How to Cite

Quintero, J. R. (2020). A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39(150), 6–17. https://doi.org/10.18257/raccefyn.213

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this paper we establish the existence of periodic travelling waves for a 2D Boussinesq type system in threedimensional water-wave dynamics in the weakly nonlinear long-wave regime. For wave speed |c| > 1 and large surface tension, we are able to characterize these solutions through spatial dynamics by reducing a linearly ill-posed mixed type initial value problem to a center manifold of finite dimension and infinite codimension. We will see that this center manifold contains all globally defined small-amplitude solutions of the travelling wave equation for the Boussinesq system that are periodic in the direction of propagation. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.
https://doi.org/10.18257/raccefyn.213
PDF (Español (España))

References

Grover, M.(2001). An existence theory for three-dimensionalperiodic travelling gravity-capillary water waves withbounded transverse profiles.Physica D152(1): 295–415.

Grover, M., Mielke, A.(2001). A spatial dynamics approachto three-dimensional gravity-capillary steady water waves.Proc. Royal Soc. Edin. A131(1): 83–136.

Grover, M., Schneider, A.(2001). Modulating pulse solutionsfor a class of nonlinear wave equations.Commun. Math. Phys.219: 489–522.

Haragus–Courcelle M., Schneider G.(1999). Bifurcating frontsfor the Taylor-Couette problem in infinite cylinders.Z.Angew. Math. Phys.50: 120–151.

Kirchgässner, A.(1982). Wave solutions of reversible systemsand applications.J. Diff. Eqns.45: 113–127.

Mielke, A.(1988). Reduction of quasilinear elliptic equationsin cylindrical domains with applications.Math. Meth. Appli.Sci.101: 51–56.

Mielke, A.(1991).Hamiltonian and Lagrangian Flows on CenterManifolds.Berlin: Springer–Verlag.Mielke, A.(1992). On nonlinear problems of mixed type: aqualitative theory using infinite-dimensional center mani-folds.J. Dyn. Diff. Eqns.4(1): 419–443.

Pazy, A.(1983).Semigroups of Linear Operators and Applicationsto Partial Differential Equations. Springer–Verlag, New York.Quintero J., Pego R.(1999). Two–dimensional solitary wavesfor a Benney–Luke equation.Physica D132: 476–496.

Quintero J., Pego R.(2002). A host of Travelling Waves in aModel of Three-Dimensional Water-Wave Dynamics.Non-linear Science12: 59–83.

Sandstede B., Scheel A.(1999). An Essential instability ofpulses and bifurcations to modulated travelling waves.Proc.Roy. Soc. Edin. A129: 1263–1290.

Sandstede B., Scheel A.(2004). Defects in oscillatory media:Toward a classification.SIAM J. Appl. Dynam. Syst.3: 1–68.

Scarpellini, B.(1990). On nonlinear problems of mixed type:a qualitative theory using infinite-dimensional center mani-fold. I and II.J. Appl. Math. Phys. (ZAMP).42: 289–314.

Vanderbauwhede, A., and Iooss, G.(1982). On nonlinearproblems of mixed type: a qualitative theory using infinite-dimensional center manifold. I and II.Dynamics Reported,New Series1: 125–163.

Vanderbauwhede A.(1989). Centre manifolds, normal formsand elementary bifurcations.Dynamics Reported, New Series2: 89-169

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2015 Journal of the Colombian Academy of Exact, Physical and Natural Sciences