FROM PREDICTION TO ANTIGENIC ANALYSIS: IN THE FOOTPRINTS OF A CONFORMATIONAL EPITOME
PDF (Español (España))

How to Cite

Calvo, J. C., Martínez, J. C., Patarroyo, . M. E., & Satterthwait, A. C. (2023). FROM PREDICTION TO ANTIGENIC ANALYSIS: IN THE FOOTPRINTS OF A CONFORMATIONAL EPITOME. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 27(102), 141–144. https://doi.org/10.18257/raccefyn.27(102).2003.2056

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

While T cells respond to a denatured or proteolyzed antigen, most antibodies to native proteins prefer the native conformation, particularly in globular proteins. It has been found that monoclonal antibodies to Pfs25 protein of P. falciparum completely block malaria transmission from human sera to the Anopheles mosquito. One of these, 4B7, binds weakly to a linear peptide, ILDTSNPVKT, that maps to a predicted beta-hairpin loop. This prediction is based on NMR structures for epidermal growth factor-like proteins and GORBTURN algorithm. Linear peptides and several loops were synthesized in order to determine which one best mimicked the corresponding epitope on Pfs25. The antibody 4B7 and a rabbit antiserum to P. falciparum gametes were titered against these peptides in ELISA. These antibodies showed little reaction with linear peptides, and a strong reaction with a loop.

https://doi.org/10.18257/raccefyn.27(102).2003.2056

Keywords

Conformational epitopes | Pfs25 protein | P. falciparum | Antigenic analysis
PDF (Español (España))

References

Allen, P.M. & E.R. Unanue. 1984. Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas. J. Immun. 132: 1077-1079.

Alexander, H., Johnson, D.A., Rosen, J., Jerabek, L., Green, N., Weissman, I.L. & R.A. Lerner. 1983. Mimicking the alloantigenicity of proteins with chemically synthesized peptides differing in single amino acids. Nature 306: 697-699.

Amit, A.G., Mariuzza, R.A., Phillips, S.E.V. & R.J. Poljak. 1986. Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution. Science 233: 747-753.

Arrhenius, T. & A.C. Satterthwait. 1990. Peptides: structure and biology (Proceedings of the 11th American Peptide Symposium). ESCOM, Leiden, pp. 870-872.

Barr, P.J., Green, K.M., Gibson, H.L., Bathurst, I.C., Quakyi, I.A. & D.C. Kaslow. 1991. Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J. Exp. Med. 174: 1203-1208.

Beachey, E.H., Seyer, J.M., Dale, J.B., Simpson, W.A. & A.H. King. 1981. Type-specific protective immunity evoked by synthetic peptide of Streptococcus pyogenes M protein. Nature 292: 457-459.

Burton, D.R. & I.A. Wilson. 2001. Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293: 1155-59.

Cabezas, E. & A.C. Satterthwait. 1999. The hydrogen bond mimic approach: solid-phase synthesis of a peptide stabilized as an a-helix with a hydrazone link. J. Amer. Chem. Soc. 121: 3862-3875.

Calvo, J.C., Barrera, N.F., García, J.A., Guzmán, F., Espejo, F. & M.E. Patarroyo. 1999. Síntesis de la oxitocina en fase sólida usando terbutoxicarbonilo y fluorenilmetoxicarbonilo derivados. Rev. Colomb. Quim. 28(1): 19-25.

Calvo, J.C. & A.C. Satterthwait. 2000. Identificación de un epítope conformacional en el extremo carboxilo de la proteína MSP-1 de P. falciparum. Rev. Colomb. Quim. 29(2): 15-23.

Chiang, L.C.; Cabezas, E.; Calvo, J.C. & A.C. Satterthwait. 1992. Peptides: biology and structure (Proceedings of the Chinese Peptide Symposium 1992). Du, Y., Tam, J.P. & Zhang, Y.S. (Eds.), ESCOM, Leiden, pp. 204-206.

Fries, H.C., Lamers, M.B., Smits, M.A., Ponnudurai, T. & J.H. Meuwissen. 1989. Characterization of epitopes on the 25kD protein of the macrogametes/zygotes of Plasmodium falciparum. Parasite Immunol. 11: 31-45.

Geysen, H.M., Barteling, S.J. & R.H. Meloen. 1985. Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc. Natl. Acad. Sci. USA 82: 178-182.

Gibrat, J.F., Garnier, J. & B. Robson. 1987. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J. Mol. Biol. 198: 425-443.

Hutchinson, E.G. & J.M. Thornton. 1994. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 3: 2207-2216.

Jemmerson, R. & R. Blankenfeld. 1989. Affinity consideration in the design of synthetic vaccines intended to elicit antibodies. Molec. Immunol. 26(3): 301-307.

Kaslow, D.C., Quakyi, I.A., Syin, C., Raum, M.G., Keister, D.B., Coligan, J.E., McCutchan, T.F. & L.H. Miller. 1988. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333: 74-76.

Kline, T.P., Brown, F.K., Brown, S.C., Jeffs, P.W., Kopple, K.D. & L. Mueller. 1990. Solution structures of human transforming growth factor a derived from 1h NMR data. Biochemistry 29: 7805-7813.

Lerner, R.A. 1983. Synthetic vaccines. Scient. Am. 248(2): 66-74.

Patarroyo, M.E., Romero, P., Torres, M.L., Clavijo, P., Moreno, A., Martinez, A., Rodriguez, R., Guzman, F. & E. Cabezas. 1987. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature 328: 629-632

Saphire, E.O., Parren, P.W.H.I., Pantophlet, R., Zwick, M.B., Morris, G.M., Rudd, P.M., Dwek, R.A., Stanfield, R.L., sequence of the 25 kD surface protein of P. falciparum recognized by transmission-blocking monoclonal antibodies: implications for synthetic vaccine development. Parasite Immunol 11: 425-428.

Sela, M. 1969. Antigenicity: some molecular aspects. Science 166: 1365-1374.

Van Amerongen, A., Sauerwein, R.W., Beckers, P.J.A., Meloen, R.H. & J.H.E.T. Meuwissen. 1989. Identification of a peptide

Wilmot, C.M. & J.M. Thornton. 1988. Analysis and prediction of the different types of beta-turn in proteins. J. Mol. Biol. 203: 221-232.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0