Poly(lactic acid): Synthesis, modification and applications in controlled drug delivery
PDF

Supplementary Files

Información suplementaria

How to Cite

López-Osorio, B. L., & Palacio-Betancur, J. (2023). Poly(lactic acid): Synthesis, modification and applications in controlled drug delivery. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(184), 654–667. https://doi.org/10.18257/raccefyn.1770

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Poly(lactic acid) (PLA) is the most promising biodegradable alternative to replace conventionalpetrochemical-based polymers in manufacturing high performance materials. Here we review the main methods to obtain polylactic acid and briefly discuss its functionalization and application in the field of controlled drug release. We conducted a bibliographic search of scientific databases and summarized the results of the research carried out by our group. We show that the most commonly used PLA modifications in drug delivery systems are functionalization with glycolic acid (GA) and polyethylene glycol (PEG) through copolymerization or blending, where the use of compatibilizers is essential for good adhesion. Active vectorization is discussed as its choice depends on the size of the nanoparticle and the type of disease to be treated.

https://doi.org/10.18257/raccefyn.1770

Keywords

PLA | PLGA | PLA-PEG | Nanoparticles | Copolymers | Controlled drug delivery
PDF

References

Ahmed, F., Discher, D. E. (2004). Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. Journal of Controlled Release, 96, 37-53.https://doi.org/http://dx.doi.org/10.1016/j.jconrel.2003.12.021

Ali, W., Ali, H., Gillani, S., Zinck, P., Souissi, S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 21, 1761-1786. https://doi.org/10.1007/s10311-023-01564-8

Auras, R. A., Lim, L. T., Selke, S. E. M., Tsuji, H. (2011). Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley. https://books.google.com.co/booksid=UBUdo_mbr6AC

Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., Bikiaris, D. N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11), 1822. https://doi.org/10.3390/polym13111822

Betancourt, T., Byrne, J. D., Sunaryo, N., Crowder, S. W., Kadapakkam, M., Patel, S., Casciato,S., Brannon-Peppas, L. (2009). PEGylation strategies for active targeting of PLA/PLGA nanoparticles. Journal of Biomedical Materials Research, Part A, 91(1), 263-276. https://doi.org/10.1002/jbm.a.32247

Casalini, T. (2017). 3 - Bioresorbability of polymers: Chemistry, mechanisms, and modeling. In G. Perale & J. B. T.-B. P. for B. A. Hilborn (Eds.), Bioresorbable Polymers for Biomedical Applications (pp. 65–83). Woodhead Publishing. https://doi.org/doi.org/10.1016/B978-0-08-100262-9.00003-3

Casalini, T., Rossi, F., Castrovinci, A., Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7, 259. https://doi.org/10.3389/fbioe.2019.00259

Coudane, J., Van Den Berghe, H., Mouton, J., Garric, X. Nottelet, B. (2022). Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules, 27(13), 4135. https://doi.org/10.3390/molecules27134135

Cunha, B., Bahú, J., Xavier, L., Crivellin S, de Souza, S., Lodi, L., Jardini, A., Filho, R., Schiavon, M., Concha, V., Severino, P., Souto, E. (2022). Lactide: Production Routes, Properties, and Applications. Bioengineering, 7(9), 164. https://doi.org/10.3390/bioengineering9040164

DeStefano, V., Khan, S., Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76-87. https://doi.org/10.1016/j.engreg.2020.08.002

Dijkstra, P. J., Du, H., Feijen, J. (2011). Single site catalysts for stereoselective ring-opening polymerization of lactides. Polymer Chemistry, 2(3), 520-527. https://doi.org/10.1039/C0PY00204F

Fukushima, K., Nozaki, K. (2020). Organocatalysis: A Paradigm Shift in the Synthesis of Aliphatic Polyesters and Polycarbonates. Macromolecules, 53(13), 5018-5022. https://doi.org/10.1021/acs.macromol.0c00582

Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 1-24. https://doi.org/10.3389/fphar.2021.601626

Garlotta, D. (2001). A Literature Review of Poly(Lactic Acid). Journal Polymers Environmental, 9, 63-84. https://doi.org/10.1023/a:1020200822435

Harris, J.M. (Editor). (1992). Poly(Ethylene Glycol) Chemistry. Biotechnical and Biomedical Applications. Springer New York, NY. https://doi.org/https://doi.org/10.1007/978-1-4899-0703-5

Hoyos-Ceballos, G. P., Ruozi, B., Ottonelli, I., Da Ros, F., Vandelli, M. A., Forni, F., Daini, E., Vilella, A., Zoli, M., Tosi, G., Duskey, J. T., López Osorio, B. L. (2020). PLGA-PEG-Ang–2 nanoparticles for blood–brain barrier crossing: Proof-of-concept study. Pharmaceutics, 12 (1), 111. https://doi.org/10.3390/pharmaceutics12010072

Hoyos-Ceballos, G. P., Sánchez-Giraldo, V., Mendivil-Perez, M., Jiménez-Del Río, M., Sierra-García, L., Vélez-Pardo, C., López-Osorio, B. L. (2018). Design of epigallocatechin gallate loaded PLGA/PF127 nanoparticles and their effect upon an oxidative stress model. Journal of Drug Delivery Science and Technology, 48, 152–160. https://doi.org/10.1016/j.jddst.2018.09.010

Hu, Y., Daoud, W. A., Cheuk, K. K. L., Lin, C. S. K. (2016). Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid). Materials, 9(3), 133. https://doi.org/10.3390/ma9030133

Jem, K. J., Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60-70. https://doi.org/10.1016/j.aiepr.2020.01.002

Khalid, M., El-Sawy, H. S. (2017). Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics, 528, 675-691. https://doi: 10.1016/j.ijpharm.2017.06.052

Kumari, A., Yadav, S. K., Yadav, S. C. (2010). Biodegradable polymeric nanoparticles-based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1-18. https://doi:10.1016/j.colsurfb.2009.09.00

Li, X., Lin, Y., Liu, M., Meng, L., Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477

Li, Y., Qiang, Z., Chen, X., Ren, J. (2019). Understanding thermal decomposition kinetics of flameretardant thermoset polylactic acid. RSC Advances, 9(6), 3128-3139. https://doi.org/10.1039/C8RA08770A

Lohmeijer, B. G. G., Pratt, R. C., Leibfarth, F., Logan, J. W., Long, D. A., Dove, A. P., Nederberg, F., Choi, J., Wade, C., Waymouth, R. M., Hedrick, J. L. (2006). Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 39 (25), 8574-8583. https://doi.org/10.1021/ma0619381

Lu, Y., Cheng, D., Niu, B., Wang, X., Wu, X., Wang, A. (2023). Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly(Lactic-co-Glycolic Acid) Based Biodegradable Materials in Biomedical Research. Pharmaceuticals, 16, 454. https://doi.org/10.3390/ph16030454

Montané, X., Montornes, J. M., Nogalska, A., Olkiewicz, M., Giamberini, M., Garcia-Valls, R., Badia-Fabregat, M., Jubany, I., Tylkowski, B. (2020). Synthesis and synthetic mechanism of Polylactic acid. Physical Sciences Reviews, 5(12), 20190102. https://doi.org/doi:10.1515/psr-2019-0102

Nyamweya, N. N. (2021). Applications of polymer blends in drug delivery. Future Journal of Pharmaceutical Sciences, 7(1), 1-15. https://doi.org/10.1186/s43094-020-00167-2

Orozco, V.H., Palacio, J., Sierra, J., López, B. L. (2013). Increased covalent conjugation of a model antigen to poly(lactic acid)-g-maleic anhydride nanoparticles compared to bare poly(lactic acid) nanoparticles. Colloid and Polymer Science, 291(12), 2775-2781. https://doi.org/10.1007/s00396-013-3023-9

Orozco, V. H., Vargas, A. F., López, B. L. (2007). Study of the Polymerization Kinetic of Lactic Acid. Macromolecular Symposia, 258, 45-52. https://doi.org/10.1002/masy.200751206

Palacio, J., Agudelo, N. A., López, B. L. (2016a). PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Current Opinion in Chemical Engineering, 11, 14-19. https://doi.org/10.1016/j.coche.2015.11.006

Palacio, J., Agudelo, N. A., López, B. L. (2016b). PLA/Pluronic® nanoparticles as potential oral delivery systems: Preparation, colloidal and chemical stability, and loading capacity. Journal of Applied Polymer Science, 133(33), 43828. https://doi.org/10.1002/app.43828

Palacio, J., Orozco, V. H., López, B. L. (2011). Effect of the molecular weight on the physicochemical properties of poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption. Journal of the Brazilian Chemical Society, 22(12), 2304-2311.

Park, T. G., Cohen, S., Langer, R. (1992). Poly(L-lactic acid)/Pluronic blends: characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrixes. Macromolecules, 25, 116-122. https://doi.org/10.1021/ma00027a019

Perry, J. L., Reuter, K. G., Kai, M. P., Herlihy, K. P., Jones, S. W., Luft, J. C., Napier, M., Bear, J. E., DeSimone, J. M. (2012). PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Letters, 12(10), 5304-5310. https://doi.org/10.1021/nl302638g

Pinto Reis, C., Neufeld, R. J., Ribeiro, A. J., Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine Nanotechnology Biology Medicine, 2, 8-21. https://doi.org/10.1016/j.nano.2005.12.003

Pourtalebi Jahromi, L., Ghazali, M., Ashrafi, H., Azadi, A. (2020). A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon, 6(2), 03451. https://doi.org/10.1016/j.heliyon.2020.e03451

Puthumana, M., Santhana Gopala Krishnan, P., Nayak, S. K. (2020). Chemical modifications of PLA through copolymerization. International Journal of Polymer Analysis and Characterization, 25(8), 634-648. https://doi.org/10.1080/1023666X.2020.1830650

Rasal, R. M., Janorkar, A. V., Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

Riley, T., Govender, T., Stolnik, S., Xiong, C. D., Garnett, M. C., Illum, L., Davis, S. S. (1999). Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids and Surfaces B: Biointerfaces, 16, 147-159. https://doi.org/10.1016/S0927-7765(99)00066-1

Roberto, S., Andrea, M., Fiorenza, S., Fortunato G. E., Marco, M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11 (4), 651. https://doi.org/10.3390/polym11040651

Singh, R., Sharma, R., Shaqib, M., Sarkar, A., Chauhan, K. D. (2021). Chapter 10 - Biodegradable polymers as packaging materials (S. Thomas, S. Gopi, & A.B. T.-B. and their I. A. Amalraj, Eds.; pp. 245-259). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819240-5.00010-9

Singhvi, M. S., Zinjarde, S. S., Gokhale, D. V. (2019). Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 127(6), 1612-1626. https://doi.org/10.1111/jam.14290

Tabatabaei Mirakabad, F. S., Nejati-Koshki, K., Akbarzadeh, A., Yamchi, M. R., Milani, M., Zarghami, N., Zeighamian, V., Rahimzadeh, A., Alimohammadi, S., Hanifehpour, Y., Joo, S. W. (2014). PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific Journal of Cancer Prevention, 15(2), 517-535. https://doi.org/10.7314/apjcp.2014.15.2.517

Tang, X., Pikal, M. (2004). Design of Freeze-Drying Processes for Pharmaceuticals:Practical Advice. Pharmaceutical Research, 21, 191-200. https://doi.org/10.1023/b:pham.0000016234.73023.75

Tobío, M., Sánchez, A., Vila, A., Soriano, I., Evora, C., Vila-Jato, J., Alonso, M. (2000). The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces. B, Biointerfaces, 18(3-4), 315-323.https://doi.org/10.1016/s0927-7765(99)00157-5

Vllasaliu, D., Fowler, R., Stolnik, S. (2014). PEGylated nanomedicines: recent progress and remaining concerns. Expert Opinion on Drug Delivery, 11(1), 139-154. https://doi.org/10.1517/17425247.2014.866651

Xiao, R. Z., Zeng, Z. W., Zhou, G. L., Wang, J. J., Li, F. Z., Wang, A. M. (2010). Recent advances in PEG-PLA block copolymer nanoparticles. International Journal of Nanomedicine, 5, 1057-1065. https://doi.org/10.2147/IJN.S14912

Yang, L., El Ghzaoui, A., Li, S. (2010). In vitro degradation behavior of poly(lactide)-poly(ethylene glycol) block copolymer micelles in aqueous solution. International Journal of Pharmaceutics, 400 (1-2), 96-103. https://doi.org/10.1016/j.ijpharm.2010.08.037

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales