Microstructure and optical properties of bismuth and oxide bismuth films using unbalanced magnetron
PDF (Español (España))

How to Cite

Otálora, D., Orozco, G., & Olaya - Florez, J. J. (2015). Microstructure and optical properties of bismuth and oxide bismuth films using unbalanced magnetron. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39(150), 18–25. https://doi.org/10.18257/raccefyn.119

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Bismuth and bismuth oxide are materials of technological and theoretical interest because of their optical and electrical properties. Thin films of bismuth (Bi) and bismuth oxide (Bi2O3) on glass substrates were produced at room temperature using the unbalanced magnetron sputtering (UBM) technique. The microstructural characterization of samples was studied using x-ray diffraction (XRD) and confocal laser microscopy (CLM), while their elemental composition was analyzed with Auger electron spectroscopy (AES) and their optical properties with ultravioletvisible (UV/Vis) spectroscopy in the wavelength range of 500 - 1800 nm. XRD results showed that both materials have a polycrystalline character, with a rhombohedral structure for bismuth and phase for bismuth oxide. The energy band gap was 2.3 eV and 2.27 eV for bismuth and bismuth oxide, respectively.
https://doi.org/10.18257/raccefyn.119
PDF (Español (España))

References

Albella, J.M. 2003. Láminas delgadas y recubrimientos. Prepa-ración, propiedades y aplicaciones. Editorial CSIC - CSIC Press. España. pp.101-123.

Bedoya, C. M., Pinzón, M.J., Orjuela, J.E.A., Restrepo, E., Olaya, J.J. 2012. Physical-chemical properties of bismuth and bismuth oxides: Synthesis, characterization and appli-cations. Dyna, 79(176): 139-148.

Bhattacharyya, S.R., Gayen, R.N., Paul, R., Pal, A.K. 2009. Determination of optical constants of thin films fromtransmittance trace. Thin Solid Films. 517: 5530-5536. Disponible en: www.sciencedirect.com.

Boffoué, M. O., Lenoir, B., Scherrer, H., Dauscher, A. 1998. Pulsed laser deposition of bismuth in the presence of different ambient atmospheres. Thin Solid Films. 322: 132-137. Disponible en: www.sciencedirect.com.

Depablos, O. L. 2013. Estabilidad estructural de películas delgadas de óxido de bismuto (δ-Bi_2 O_3). (Tesis de Maestría). Universidad Nacional Autónoma de México. México D.F.

Dresselhaus, M.S., Lin, Y.M., Rabin, O., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R., Samsonidze, G., Dresselhaus, G. 2003. Nanowires and nanotubes. Materials Science and Engineering: C 23:129-140. Disponible en: www.sciencedirect.com.

Microestructura y propiedades ópticas de películas y óxido de bismuto25 Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39(150):18-25, enero-marzo de 2015.

Economou, A. 2005. Bismuth – film electrodes: Recent develop-ments and potentialities for electroanalysis. TrAC Trends in Analytical Chemistry. 24: 334-340. Disponible en: www.sciencedirect.com.El-Sayed, N.Z. 2006. Physical characteristics of thermally evapo-rated bismuth thin films. Vacuum. 80: 860-863. Disponible en: www.sciencedirect.com.

Fan, H.T., Pan, S.S., Teng, X.M., Ye, C., Li, G.H., Zhang, L.D.2006. δ-Bi2O3 thin films prepared by reactive sputtering: Fabrication and characterization. Thin Solid Films. 513: 142-147. Disponible en: www.sciencedirect.com.

Gujar, T.P, Shinde, V.R., Lokhande, C.D. 2006. Spray pyrolysed bismuth oxide thin films and their characterization. Mate-rials Research Bulletin. 41: 1558-1564. Disponible en: www.sciencedirect.com.

Hicks, L.D. & Dresselhaus, M.S. 1993. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review. B 47: 16631.

Hofmann, P. 2006. The surfaces of bismuth: Structural and elec-tronic properties. Progress in Surface Science. 81: 191-245. Disponible en: www.sciencedirect.com.Iljinas, A., Burinskas, S., Dudonis, J. 2010. Synthesis of Bismuth Oxide Thin Films Deposited by Reactive Magnetron Sput-tering. Proceedings of the VIII International Conference ION 2010, Kazimierz Dolny, Poland, June 14-17.

Iyengar, A. S., Liang, D., Xuan, P.A., Abramson, A. R. 2012. Densification effects on the electrical behavior of uniaxially compacted bismuth nanowires. Acta Materialia. 60: 2369-2378. Disponible en: www.sciencedirect.com.

Jayachandran, K. 1997. Optical Studies in Bismuth, Antimony, Bismuth Oxide and Antimony Oxide Thin Films. (Thesis for awarding the degree of Doctor of Philosophy in Physics). Mahatma Gandhi University. School of Pure and Applied Physics.

Jovalekic ́, C., Zduji ́c, M., Atanasoska, Lj. 2009. Surface anal-ysis of bismuth titanate by Auger and X-ray photoelectron spectroscopy. Journal of Alloys and Compounds. 469: 441-444. Disponible en: www.sciencedirect.com.

Lee, J.H., Ohara, S., Nagashima, T., Hasegawa, T., Sugimoto, N., Igarashi, K., Katoh, K., Kikuchi, K. 2005. Clock Recovery and Demultiplexing of High-Speed OTDM Signal Through Combined Use of Bismuth Oxide Nonlinear Fiber and Erbium-Doped Bismuth Oxide Fiber. IEEE Photonic Tech L. 17: 2658-2660. Disponible en: www.ieeexplore.ieee.org.

Leontiea, L., Caramanb, M., Visinoiuc, A., Rusua, G.I. 2005. On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. Thin Solid Films. 473: 230-235. Disponible en: www.sciencedirect.com.

Li, L., Yang, Y., Fang, X., Kong, M., Li, G., Zhang, L. 2007. Diameter-dependent electrical transport properties of bis-muth nanowire arrays. Communications. 141: 492-496. Disponible en: www.sciencedirect.com.

Lin, Y.M., Sun, X., Dresselhaus, M.S. 2000. Theoretical investi-gation of thermoelectric transport properties in cylindrical Bi nanowires, Physical Review. B 62: 4610.

Lutskii, V.N. 1965. Features of optical absorption of metallic films in region where metal turns into a dielectric. Soviet Physics JETP Letters. 2: 245. Nowak-Wozny, D., Janiczek, T., Mielcarek, W., Gajewski, J.B.2009. Fractional electrical model for modified bismuth oxide. J. Electrostatics. 67: 18-21. Disponible en: www.sciencedirect.com

Ortiz, M. F.. 2012. Recubrimientos de bismuto depositados por la técnica sputtering D.C. pulsado. (Tesis de Maestría). Universidad Nacional de Colombia. Facultad de Ingeniería, Departamento de Mecánica y Mecatrónica. Bogotá D.C.

Patil, R.B., Yadav, J.B., Puri, R.K., Puri, V. 2007. Optical properties and adhesion of air oxidized vacuum evaporated bismuth thin films. Journal of Physics and Chemistry of Solids. 68: 665-669. Disponible en: www.sciencedirect.com.

Patil, R.B., Puri, R.K., Puri, V. 2007. Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure. Applied Surface Science. 253: 8682-8688. Disponible en: www.sciencedirect.com.

Sandomirskii, V.B. 1967. Quantum size effect in a semimetal film. Soviet Physics JETP. 25: 101. Schuisky, M. & Harsta, A. 1996. Epitaxial growth of Bi2O2.33 by halide Cvd. Chem. Vap. Depos.2 (6): 235-238.

Sirota, B., Reyes-Cuellar, J., Kohli, P., Wang, L., McCarroll, M.E., Aouadi, S.M. 2012. Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering depo-sition. Thin Solid Films. 520: 6118-6123. Disponible en: www.sciencedirect.com.

Swanepoel, R. 1983. Determination of the thickness and optical constants of amorphous silicon. J. Phps. E: Sci. Instrum. 16: 1214-1222. Disponible en: www.sciencedirect.com.

Wang, Y., Zhao, J., Wang. Z. 2011. A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process. Colloid Surface A. 377: 409-413. Disponible en: www.sciencedirect.com.

Watts, J. F. & Wolstenholme, J.2003.An Introduction to Surface Analysis by XPS and AES. Wiley. Chichester, Inglaterra. Cap. 1: 1-17; Cap. 3: 59-79.Weidong, H., Wei, Q., Xiaohong, W., Hailong, N. 2007. Thin bismuth oxide films prepared through the sol–gel method. Materials Letters. 61: 4100-4102. Disponible en: www.sciencedirect.com.

Xu, H. 2008. A nafion–coated bismuth film electrode for the determination of heavy metals in vegetable using differ-ential pulse anodic stripping voltametry: An alternative to mercury–based electrodes. Food Chemistry. 109: 834-839. Disponible en: www.sciencedirect.com.

Yang, Ch.. 2008. A Study of Electrical Properties in Bismuth Thin Films. Physics REU Summer. University of Florida. Gainesville, FL 32611. Disponible en: www.phys.ufl.edu

Zhang, L., Hashimoto, Y., Taishi, T., Nakamura, I., Ni, Q.-Q.2011. Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process. Appl. Surf. Sci. 257: 6577-6582. Disponible en: www.sciencedirect.co.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.