Torsional Alfvén Waves Propagation in a Stratified Solar Atmosphere
PDF (Spanish)

Keywords

MHD
Solar Atmosphere
Numerical Methods

How to Cite

Torsional Alfvén Waves Propagation in a Stratified Solar Atmosphere. (2021). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 45(174), 52-66. https://doi.org/10.18257/raccefyn.1245

Abstract

Observations indicate that the magnetic field in the solar atmosphere is twisted, playing an important role in different solar phenomena, such as magnetic reconnection or solar flaring activity, among others. However its influence on these kind of phenomena remains unclear. Motivated by this, we study, through several 3D numerical simulations, the effect of the magnetic field twist on the propagation of torsional Alfv´ en and magneto-acoustic waves moving along the photosphere and the lower chromosphere in the quiet Sun. In order to simulate the dynamics of these magnetohydrodynamic (MHD) waves, we solve numerically the ideal 3D linearized MHD equations by assuming a quiet Sun, which is excited by an initial twist perturbation in the velocity vector field, for six different values of the twist parameter and three equilibrium magnetic field strengths. Particularly, we analyze the 3D morphology of the velocity and magnetic fields lines, and the spatial profiles of the transversal component of these fields associated with the torsional Alfv´én waves. The results of our numerical simulations reveal the magnetic field amplification due to the twist parameter. Specifically, we have observed that this quantity increases as the twist parameter increases and decreases for larger values of the equilibrium magnetic strength. Moreover, we show that the maximum of amplification as function of the  twist has an exponential behavior. Finally, we notice that the Poynting vector flux is greater for larger values of the initial twist but is smaller for more intense equilibrium magnetic fields.

PDF (Spanish)

References

Angelopoulos, V. (2008, December). The THEMIS Mission. , 141(1-4), 5-34. doi: 10.1007/s11214-008-9336-1

Bareford, M. R., Hood, A. W., & Browning, P. K. (2013, February). Coronal heating by the partial relaxation of twisted loops., 50(), A40. doi: 10.1051/0004-6361/201219725

Bi, Y., Jiang, Y., Yang, J., Xiang, Y., Cai, Y., & Liu, W. (2015, May). Partial Eruption of a Filament with Twisting Non-uniform Fields. , 805(1), 48. doi: 10.1088/0004-637X/805/1/48

Bommier, V., Derouich, M., Landi Degl’Innocenti, E., Molodij, G., & Sahal-Br´échot, S. (2005, March). Interpretation of second solar spectrum observations of the Sr I 4607 line in a quiet region: Turbulent magnetic field strength determination. 432(1), 295-305. doi: 10.1051/0004-6361:20035773

Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., & Li, H. (2009, March). Evidence for a Pre-Eruptive Twisted Flux Rope Using the Themis Vector Magnetograph. , 693(1), L27-L30. doi: 10.1088/0004-637X/693/1/L27

Chatterjee, P., & Fan, Y. (2013, November). Simulation of Homologous and Cannibalistic Coronal Mass Ejections produced by the Emergence of a Twisted Flux Rope into the Solar Corona. , 778(1), L8. doi: 10.1088/2041-8205/778/1/L8

De Pontieu, B., Title, A. M., Lemen, J. R., Kushner, G. D., Akin, D. J., Allard, B., . . . Waltham, N. (2014, July). The Interface Region Imaging Spectrograph (IRIS). , 289(7), 2733-2779. doi: 10.1007/s11207-014-0485-y

Ebrahimi, Z., Karami, K., & Soler, R. (2017, August). The Effect of a Twisted Magnetic Field on the Phase Mixing of the Kink Magnetohydrodynamic Waves in Coronal Loops. , 845(1), 86. doi: 10.3847/1538-4357/aa7f75

Evans, C. R., & Hawley, J. F. (1988, September). Simulation of Magnetohydrodynamic Flows: A Constrained Transport Model. , 332(), 659. doi: 10.1086/166684

Gordovskyy, M., Browning, P. K., Kontar, E. P., & Bian, N. H. (2014, January). Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere. , 561(), A72. doi: 10.1051/0004-6361/201321715

Hoeksema, J. T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., . . . Turmon, M. (2014, September). The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance. , 289(9), 3483-3530. doi: 10.1007/s11207-014-0516-8

Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., . . . Carter, T. (2008, April). Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). , 136(1-4), 67-115. doi: 10.1007/s11214-008-9341-4

Jain, R., Gascoyne, A., & Hindman, B. W. (2011, August). Interaction of p modes with a collection of thin magnetic tubes. , 415(2), 1276-1279. doi: 10.1111/j.1365-2966.2011.18778.x

Kaiser, M. L., Kucera, T. A., Davila, J. M., St. Cyr, O. C., Guhathakurta, M., & Christian, E. (2008, April). The STEREO Mission: An Introduction. , 136(1-4), 5-16. doi: 10.1007/s11214-007-9277-0

Knizhnik, K. J., Linton, M. G., & DeVore, C. R. (2018, September). The Role of Twist in Kinked Flux Rope Emergence and Delta-spot Formation. , 864(1), 89. doi: 10.3847/1538-4357/aad68c

Kohutova, P., Verwichte, E., & Froment, C. (2020, January). First direct observation of a torsional Alfv´ en oscillation at coronal heights. , 633(), L6. doi: 10.1051/0004-6361/201937144

Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., . . . Golub, L. (2007, June). The Hinode (Solar-B) Mission: An Overview. , 243(1), 3-17. doi: 10.1007/s11207-007-9014-6

Liu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., . . . Wiegelmann, T. (2016, February). Structure, Stability, and Evolution of Magnetic Flux Ropes from the Perspective of Magnetic Twist. , 818(2), 148. doi: 10.3847/0004-637X/818/2/148

Liu, Z., Xu, J., Gu, B.-Z., Wang, S., You, J.-Q., Shen, L.-X., . . . Zhang, B.-R. (2014, June). New vacuum solar telescope and observations with high resolution. Research in Astronomy and Astrophysics, 14(6), 705-718. doi: 10.1088/1674-4527/14/6/009

Lora-Clavijo, F. D., Cruz-Osorio, A., & Guzmán, F. S. (2015, June). CAFE: A New Relativistic MHD Code. , 218(2), 24. doi: 10.1088/0067-0049/218/2/24

Mariska, J. T. (1986, January). The quiet solar transition region. , 24(), 23-48. doi: 10.1146/annurev.aa.24.090186.000323

Murawski, K., Ballai, I., Srivastava, A. K., & Lee, D. (2013, December). Threedimensional numerical simulation of magnetohydrodynamic-gravity waves and vortices in the solar atmosphere. , 436(2), 1268-1277. doi: 10.1093/mnras/stt1653

Murawski, K., Chmielewski, P., Zaqarashvili, T. V., & Khomenko, E. (2016, July). Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube. , 459(3), 2566-2572. doi: 10.1093/mnras/stw703

Murawski, K., Solov’ev, A., & Kra´ skiewicz, J. (2015, July). A Numerical Model of MHD Waves in a 3D Twisted Solar Flux Tube., 290(7), 1909-1922. doi: 10.1007/s11207-015-0740-x

Navarro, A., Lora-Clavijo, F. D., & Gonz´ alez, G. A. (2017, July). Magnus: A New Resistive MHD Code with Heat Flow Terms., 844(1), 57. doi: 10.3847/1538-4357/aa7a13

Navarro, A., Lora-Clavijo, F. D., Murawski, K., & Poedts, S. (2021, January). Thermal conduction effects on formation of chromospheric solar tadpole-like jets. , 500(3), 3329-3334. doi: 10.1093/mnras/staa3402

Navarro, A., Murawski, K., W´ ojcik, D., & Lora-Clavijo, F. D. (2019, October). Numerical simulations of the emerging plasma blob into a solar coronal hole. , 489(2), 2769-2774. doi: 10.1093/mnras/stz2313

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. (2012, January). The Solar Dynamics Observatory (SDO). , 275(1-2), 3-15. doi: 10.1007/s11207-011-9841-3

Pimentel, O. M., & Lora-Clavijo, F. D. (2019, December). On the linear and non-linear evolution of the relativistic MHD Kelvin-Helmholtz instability in a magnetically polarized fluid. , 490(3), 4183-4193. doi: 10.1093/mnras/stz2750

Raouafi, N. E. (2009, February). Observational Evidence for Coronal Twisted Flux Rope. , 691(2), L128-L132. doi: 10.1088/0004-637X/691/2/L128

Srivastava, A. K., Shetye, J., Murawski, K., Doyle, J. G., Stangalini, M., Scullion, E., . . . Dwivedi, B. N. (2017, March). High-frequency torsional Alfv´ en waves as an energy source for coronal heating. Scientific Reports, 7(), 43147. doi: 10.1038/srep43147

Terradas, J., Magyar, N., & Van Doorsselaere, T. (2018, January). Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes. , 853(1), 35. doi: 10.3847/1538-4357/aa9d0f

Tiwari, S. K., Moore, R. L., De Pontieu, B., Tarbell, T. D., Panesar, N. K., Winebarger, A. R., & Sterling, A. C. (2018, December). Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations., 869(2), 147. doi: 10.3847/1538-4357/aaf1b8

Wiegelmann, T., & Sakurai, T. (2012, September). Solar Force-free Magnetic Fields. Living Reviews in Solar Physics, 9(1), 5. doi: 10.12942/lrsp-2012-5

Zaqarashvili, T. V., V¨ or¨ os, Z., & Zhelyazkov, I. (2014, January). Kelvin-Helmholtz instability of twisted magnetic flux tubes in the solar wind. , 561(), A62. doi: 10.1051/0004-6361/201322808

Zhelyazkov, I. (2015, March). On Modeling the Kelvin-Helmholtz Instability in Solar Atmosphere. Journal of Astrophysics and Astronomy, 36(1), 233-254. doi: 10.1007/s12036-015-9332-215

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales