Abstract
The objective of this work was to analyze the richness and biogeographic relationships between life zones in Colombia, as well as to define indicator species and genera. For this purpose, information was compiled from different national herbaria, databases and publications. The classification in life zones of Colombia was used to define the localities of lichen collection. Three main groupings were found: humid forest regions (Amazonia and Chocó), dry forests and Orinoquía, and Andean forests (Premontano a páramo). These regions formed groups on a gradient from low elevation life zones to paramo. The regions with the greatest richnes and endemism were the Andean and those of humid forest. Richness showed a decreasing pattern with elevation and unimodal with latitude, with higher values at mid-latitudes.
References
Ahmadjian, V. (1982). Holobionts have more parts. Int. Lichenological Newsletter. 15 (2): 19.
Antonelli, A. & Sanmartin, I. (2011). Why are there so many plant species in the Neotropics? JSTOR. 60 (2): 403-414.
Antonelli, A., Zizka, A., Antunes C.F., Scharn, R. , Bacon, C., Silvestro, D., Condamine, F. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences. 115: 201713819. Doi: https://doi.org/10.1073/pnas.1713819115
Arnold, A.E., Miadlikowska J., Higgins K.L., Sarvate S.D, Gugger P., Way A., Hofstetter V., Kauff F., Lutzoni F. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous Fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol. 58: 283-297.
Arcadia, L. (2013). Lichen biogeography at the largest scales. The Lichenologist. 45 (04): 565-578. Doi: https://doi.org/10.1017/S0024282913000170
Baas-Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde, The Hague, the Netherlands: W.P. Van Stockum & Zoon. 263 p.
Bernal R., Gradstein S.R., Celis M. (2016). Catálogo de plantas y liquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co
Carvalho, C. J. B. (2013). Áreas de endemismo. En C. J. B. Carvalho & E. A. B. Almeida (Eds.). Biogeografia da América do Sul: Padrões e Processos (pp. 41-50). São Paulo: Roca.
Díaz-Escandón, D., Soto-Medina, E., Lücking, R., Silverstone-Sopkin, P. A. (2016). Corticolous lichens as environmental indicators of natural sulphur emissions near the sulphur mine El Vinagre (Cauca, Colombia). The Lichenologist. 48: 147-159.
Feria, S. & García, S. (2019). Composición y riqueza de líquenes cortícolas en tres fragmentos de bosque seco tropical, Sucre – Colombia. Tesis de pregrado. Universidad de Sucre. 155 p.
Feuerer, T. & Hawksworth, D. L. (2007). Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodiversity and Conservation. 16: 85-98. Doi: https://doi.org/10.1007/s10531-006-9142-6
Gentry, A.H. (1982). Patterns of Neotropical plant species diversity. Evolutionary Biology. 5: 1-84. Guarino, L., Jarvis, A., Hijmans, R.J., Maxted, N. (2002). 36 Geographic Information Systems (GIS) and the Conservation and Use of Plant Genetic Resources. Managing Plant Genetic Diversity. pp 387-404.
Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4: 9.
Hawksworth, D. (1988). The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical Journal of the Linnean Society. 96: 3-20. Doi: https://doi.org/10.1111/j.1095-8339.1988.tb00623
Hawksworth, D. & Grube, M. (2020). Lichens redefined as complex ecosystems. New Phytologist. 227: 1281-1283.
Hijmans, R.J., Cruz, M., Rojas, E., Guarino, L. (2001). DIVAGIS, Version 1.4. A geographic information system for the management and analysis of genetic resources data. Manual. International Potato Center, Lima, Peru. 38 p.
Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermúdez, M. A., Mora, A., Sevink, J., Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science. 330: 927-931.
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Instituto Alexander von Humboldt (I.Humboldt), Instituto Geográfico Agustín Codazzi (IGAC), Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis” (Invemar) y Ministerio de Ambiente y Desarrollo Sostenible. (2017). Mapa de Ecosistemas Continentales, Costeros y Marinos de Colombia (MEC) [mapa], Versión 2.1, escala 1:100.000.
Kattan, G. & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: Area and mass effects. Global Ecology and Biogeography. 13: 451-458. Doi: https://doi.org/10.1111/j.1466-822X.2004.00117
Latrubesse, E. M., Cozzuol, M., da Silva-Caminha, S. A., Rigsby, C. A., Absy, M. L., Jaramillo, C. (2010). The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews. 99: 99-124.
Leite, A., Barreto, X., Menezes, A., Anjos de, S., de Sousa, L., Aptroot, A., Lücking, R., dos Santos, V. M., da Silva Cáceres, M. E. (2015). Epiphytic microlichens as indicators of phytosociological differentiation between Caatinga and Brejos de Altitude. Acta Botanica Brasilica. 29 (4): 457-466.
Lücking, R. (2008). Taxonomy: A discipline on the brink of extinction: Are DNA barcode scanners the future of biodiversity research? Archives des Sciences. 61: 75-88.
Lücking, R., Rivas-Plata, E., Chaves, J. L., Umaña, L., Sipman, H. J. M. (2009). How many tropical lichens are there... really? InDiversity of Lichenology. Jubilee Volume. A. Thell, M. R. D. Seaward & T. Feuerer (eds). Bibliotheca Lichenologica. 100: 399-418.
Lücking, R., Seavey, F., Common, R., Beeching, S.Q., Breuss, O., Buck, W.R., Crane, L., Hodges, M., Hodkinson, B.P., Lay, E., Lendemer, J.C., McMullin, R.T., Mercado-Díaz, J.A., Nelsen, M.P., Rivas Plata, E., Safranek, W., Sanders, W.B., Schaefer, H.P., Seavey, J. (2011). The lichens of Fakahatchee Strand Preserve State Park, Florida: proceedings from the 18th tuckerman workshop. Bull. Florida Mus. Nat. Hist. 49: 127-186.
Madriñán S, Cortés A.J., Richardson J.E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics. 4: 192.
M cCune, B., Grace J.B. (2002). Analysis of Ecological Communities. MjM Software, Gleneden Beach, Oregon, USA. 304 p.
Martellos, S., d’Agostino, M., Chiarucci, A., Nimis, P.L. and Nascimbene, J. (2020). Lichen Distribution Patterns in the Ecoregions of Italy. Diversity. 12: 294.
Mendonça, C. de O., Aptroot, A., Lücking, R., Cáceres, M. E. da S. (2020). Global species richness prediction for Pyrenulaceae (Ascomycota: Pyrenulales), the last of the “big three” most speciose tropical microlichen families. Biodiversity and Conservation. 29 (3): 1059-1079.}
Muggia, L. & Grube, M. (2010). Fungal composition of lichen thalli assessed by single strand conformation polymorphism. Lichenologist. 42: 461-473.
Pennington, R. T. & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In C. Hoorn & F. P. Wesselingh (Eds.). Amazonia, landscape and species evolution (pp. 373-385). Oxford: Blackwell.
Peláez, R, Moncada, B., Lücking, R. (2013). Líquenes asociados a palma de moriche (Mauritia flexuosa) y vegetación de bosque de galería en San Martín, Meta. Tesis de pregrado. Universidad Distrital Francisco José de Caldas. 119 p.
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8: 224- 39.
Ramírez-Morán, N.A., León-Gómez M., Lücking R. (2016). Uso de biotipos de líquenes como bioindicadores de perturbación en fragmentos de bosque altoandino (Reserva biológica “Encenillo”, Colombia). Caldasia. 38 (1): 31-52.
Rangel-Ch., J.O. (2004). Ecosistemas del Chocó biogeográfico: síntesis final. En: Rangel-Ch., J.O. (ed). Colombia Diversidad Biótica IV. El Chocó biogeográfico/Costa Pacífica: 937-976.
Instituto de Ciencias Naturales. Bogotá, D.C. Rivas-Plata, E., Lücking, R., Lumbsch, H.T. (2008). When family matters: an analysis of Thelotremataceae (lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodivers. Conserv. 1: 1-33.
Santos, J. C., Coloma, L. A., Summers, K., Caldwell, J. P., Ree, R., Cannatella, D. C. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biology. 7 (3): e1000056.
Santos, V. M., Silva Cáceres, M. E., Lücking, R. (2019). Diversity of foliicolous lichens in isolated montane rainforests (Brejos) of northeastern Brazil and their biogeography in a Neotropical context. Ecological Research. 35 (1): 1-16.
Soto-Medina E. A., Lücking R., Silverstone-Sopkin P. A., Torres A. M. (2019). Changes functional and taxonomic diversity and composition of cortiicolous lichens in an altitudinal gradient in Colombia. Cryptogamie, Mycologie. 40 (6): 97-115.
Spribille, T., Tuovinen, V., Resl, P., et al. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 353: 488-492.
U’Ren J.M., Lutzoni F., Miadlikowska J., todos los autores. (2012). Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 99: 898-914.
Van der Hammen, T. (1991). Palaeoecological background: Neotropics. In N. Myers (Ed.), Tropical forests and climate (pp. 37-47). Dordrecht: Springer.
Vargas-Mendoza, L., Herrera, L., Moncada, B. (2014). Expedición liquénica en ChámezaCasanare. Tesis de pregrado. Universidad Distrital Francisco José de Caldas. 145 p.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales