Abstract
Vehicular noise is a significant source of noise pollution in urban environments, affecting the health and well-being of the inhabitants. Here, we propose a mathematical model to predict and mitigate vehicular noise levels, integrating key variables such as traffic volume, speed, and composition. The methodology included data collection at four points in the city of Milagro, Ecuador, and analysis using QGIS and MATLAB tools under the RLS 90/DIN standard with linear regression equations. We estimated a 15% noise reduction with the implementation of noise barriers. The model showed greater accuracy and replicability compared to previous studies. We acknowledge the omission of factors such as vegetation and meteorological conditions as limitations of the study. The model can contribute to the design of public policies on urban planning and noise pollution control.
References
Ahac, M., Ahac, S., & Lakušić, S. (2021). Long-term sustainability approach in road traffic noise wall design. Sustainability, 13(2), 536. https://doi.org/10.3390/su13020536
Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). Noise monitoring, mapping, and modelling studies – A review. Journal of Ecological Engineering, 21(4). https://doi.org/10.12911/22998993/119804
Amoatey, P., Omidvarbona, H., Baawain, M. S., Al-Mayahi, A., Al-Mamun, A., & Al-Harthy, I. (2020). Exposure assessment to road-traffic noise levels and health effects in an arid urban area. Environmental Science and Pollution Research, 27(28), 35051–35064. https://doi.org/10.1007/s11356-020-09785-y
Amran, M., Fediuk, R., Murali, G., Vatin, N., & Al-Fakih, A. (2021). Sound-absorbing acoustic concretes: A review. Sustainability, 13(19), 712. https://doi.org/10.3390/su131910712
Bakker, J., Lugten, M., & Tenpierik, M. (2023). Applying vertical greening systems to reduce traffic noise in outdoor environments: Overview of key design parameters and research methods. Building Acoustics, 30(3), 315–338. https://doi.org/10.1177/1351010X231171028
Bramich, D. M., Menéndez, M., & Ambühl, L. (2022). Fitting empirical fundamental diagrams of road traffic: A comprehensive review and comparison of models using an extensive data set. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14104–14127. https://doi.org/10.1109/TITS.2022.3142255
Bravo‑Moncayo, L., Garzón, C., Chávez, M., Pavón‑García, I., & Lucio‑Naranjo, J. (2023). Spatial assessment of traffic noise using hybrid machine learning and geostatistical techniques: A case study in Cuenca, Ecuador. Sustainability, 15(10), 10020. https://doi.org/10.3390/su151010020
Casali, J. G. (2021). Sound and noise: Measurement and design guidance. In Handbook of Human Factors and Ergonomics (pp. 457–493). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119636113.ch18
Epstein, M. J. (2020). Sound and Noise: A Listener’s Guide to Everyday Life. McGill‑Queen’s Press‑MQUP.
Farooqi, Z. U. R., Ahmad, I., Ditta, A., Ilic, P., Amin, M., Naveed, A. B., & Gulzar, A. (2022). Types, sources, socioeconomic impacts, and control strategies of environmental noise: A review. Environmental Science and Pollution Research, 29(54), 81087–81111. https://doi.org/10.1007/s11356-022-23328-7
Fediuk, R., Amran, M., Vatin, N., Vasilev, Y., Lesovik, V., & Ozbakkaloglu, T. (2021). Acoustic properties of innovative concretes: A review. Materials, 14(2), 398. https://doi.org/10.3390/ma14020398
Feng, Z., & Liu, Y. (2025). The latest research status of porous sound-absorbing materials. Journal of Polymer Engineering, 45(3), 207–225. https://doi.org/10.1515/polyeng-2024-0211
Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B., & Hou, H. (2022). Acoustic metamaterials for noise reduction: A review. Advanced Materials Technologies, 7(6), 2100698. https://doi.org/10.1002/admt.202100698
Garg, N. (2022). Environmental noises control strategies. In N. Garg (Ed.), Environmental Noise Control: The Indian Perspective in an International Context (pp. 277–344). Springer International Publishing. https://doi.org/10.1007/978-3-030-87828-3_7
Gilani, T. A., & Mir, M. S. (2021). A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environmental Science and Pollution Research, 28(44), 63045–63064. https://doi.org/10.1007/s11356-021-15208-3
Hansen, C. H., & Hansen, K. L. (2021). Noise Control: From Concept to Application (2nd ed.). CRC Press. https://doi.org/10.1201/9780429428876
He, W., He, K., Zou, C., & Yu, Y. (2021). Experimental noise and vibration characteristics of elevated urban rail transit considering the effect of track structures and noise barriers. Environmental Science and Pollution Research, 28(33), 45903–45919. https://doi.org/10.1007/s11356-021-14015-0
Ibili, F., Adanu, E. K., Adams, C. A., Andam-Akorful, S. A., Turay, S. S., & Ajayi, S. A. (2022). Traffic noise models and noise guidelines: A review. Noise & Vibration Worldwide, 53(1–2), 65–79. https://doi.org/10.1177/09574565211052693
Krittanawong, C., Qadeer, Y. K., Hayes, R. B., Wang, Z., Virani, S., Zeller, M., Dadvand, P., & Lavie, C. J. (2023). Noise exposure and cardiovascular health. Current Problems in Cardiology, 48(12), 101938. https://doi.org/10.1016/j.cpcardiol.2023.101938
Kumar, B. S., & Chowdary, V. (2024). Railway noise pollution in urban environments. In N. Garg, C. Gautam, S. Rab, M. Wan, R. Agarwal, & S. Yadav (Eds.), Handbook of Vibroacoustics, Noise and Harshness (pp. 1–38). Springer Nature. https://doi.org/10.1007/978-981-99-4638-9_2-1
Kumar, S., Xiang, T. B., & Lee, H. P. (2020). Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Applied Acoustics, 159, 107088. https://doi.org/10.1016/j.apacoust.2019.107088
Lakshmanan, V., Robinson, S., & Munn, M. (2020). Machine Learning Design Patterns. O’Reilly Media, Inc.
Laxmi, V., Thakre, C., & Vijay, R. (2022). Evaluation of noise barriers based on geometries and materials: A review. Environmental Science and Pollution Research, 29(2), 1729–1745. https://doi.org/10.1007/s11356-021-16944-2
Lázaro, J., Pereira, M., Costa, P. A., & Godinho, L. (2022). Performance of low-height railway noise barriers with porous materials. Applied Sciences, 12(6), 2960. https://doi.org/10.3390/app12062960
Lee, H. P., Lim, K. M., & Kumar, S. (2021). Noise assessment of elevated rapid transit railway lines and acoustic performance comparison of different noise barriers for mitigation of elevated railway tracks noise. Applied Acoustics, 183, 108340. https://doi.org/10.1016/j.apacoust.2021.108340
Li, M., Yuan, M., Li, J., Li, Y., Zhou, W., & Zu, Y. (2023). Research and application of combined noise reduction method by using noise reducing pavement and noise barrier. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 268(8), 253–259. https://doi.org/10.3397/IN_2023_0053
Liao, G., Luan, C., Wang, Z., Liu, J., Yao, X., & Fu, J. (2021). Acoustic metamaterials: A review of theories, structures, fabrication approaches, and applications. Advanced Materials Technologies, 6(5), 2000787. https://doi.org/10.1002/admt.202000787
Liu, D., Wang, C., González-Libreros, J., Tu, Y., Elfgren, L., & Sas, G. (2023). A review on aerodynamic load and dynamic behavior of railway noise barriers when high-speed trains pass. Journal of Wind Engineering and Industrial Aerodynamics, 239, 105458. https://doi.org/10.1016/j.jweia.2023.105458
Masum, M. H., Pal, S. K., Akhie, A. A., Ruva, I. J., Akter, N., & Nath, S. (2021). Spatiotemporal monitoring and assessment of noise pollution in an urban setting. Environmental Challenges, 5, 100218. https://doi.org/10.1016/j.envc.2021.100218
Mikhailenko, P., Piao, Z., Kakar, M. R., Bueno, M., Athari, S., Pieren, R., Heutschi, K., & Poulikakos, L. (2022). Low-noise pavement technologies and evaluation techniques: A literature review. International Journal of Pavement Engineering, 23(6), 1911–1934. https://doi.org/10.1080/10298436.2020.1830091
Montes, D., Barrigón, J. M., & Rey-Gozalo, G. (2023). Effects of noise on pedestrians in urban environments where road traffic is the main source of sound. Science of the Total Environment, 857, 159406. https://doi.org/10.1016/j.scitotenv.2022.159406
Munir, S., Khan, S., Nazneen, S., & Ahmad, S. S. (2021). Temporal and seasonal variations of noise pollution in urban zones: A case study in Pakistan. Environmental Science and Pollution Research, 28(23), 29581–29589. https://doi.org/10.1007/s11356-021-12738-8
Nourani, V., Gökçekuş, H., & Umar, I. K. (2020). Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environmental Research, 180, 108852. https://doi.org/10.1016/j.envres.2019.108852
Olczak, K., Penar, W., Nowicki, J., Magiera, A., & Klocek, C. (2023). The role of sound in livestock farming—Selected aspects. Animals, 13(14), 2307. https://doi.org/10.3390/ani13142307
Oquendo-Di Cosola, V., Olivieri, F., & Ruiz-García, L. (2022). A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renewable and Sustainable Energy Reviews, 162, 112463. https://doi.org/10.1016/j.rser.2022.112463
Owolabi, O., Lodico, D., Butterfield, E., Shokouhian, M., Abiodun, P., Darko, C., & Duru, C. (2024). Effectiveness of short solid barriers to reduce noise generated by different types of highway vehicles. U.S. Department of Transportation. https://rosap.ntl.bts.gov/view/dot/79847
Partheeban, P., Karthik, K., Navin Elamparithi, P., Somasundaram, K., & Anuradha, B. (2021). Urban road traffic noise on human exposure assessment using geospatial technology. Environmental Engineering Research, 27(5), 210249. https://doi.org/10.4491/eer.2021.249
Reche, C., Tobias, A., & Viana, M. (2022). Vehicular traffic in urban areas: Health burden and influence of sustainable urban planning and mobility. Atmosphere, 13(4), 598. https://doi.org/10.3390/atmos13040598
Rey, G., Suárez, E., Montenegro, A. L., Arenas, J. P., Barrigón, J. M., & Montes, D. (2020). Noise estimation using road and urban features. Sustainability, 12(21), 217. https://doi.org/10.3390/su12219217
Saakian, A. (2020). Radio Wave Propagation Fundamentals (2nd ed.). Artech House.
Sharma, S., Sudhakara, P., Singh, J., Singh, S., & Singh, G. (2023). Emerging progressive developments in the fibrous composites for acoustic applications. Journal of Manufacturing Processes, 102, 443–477. https://doi.org/10.1016/j.jmapro.2023.07.053
Sivakumaran, K., Ritonja, J. A., Waseem, H., AlShenaibar, L., Morgan, E., Ahmadi, S. A., Denning, A., Michaud, D. S., & Morgan, R. L. (2022). Impact of noise exposure on risk of developing stress-related health effects related to the cardiovascular system: A systematic review and meta-analysis. Noise and Health, 24(114), 107. https://doi.org/10.4103/nah.nah_83_21
Yadav, D., Garg, N., Gautam, C., Agarwal, R., & Yadav, S. (2025). Noise pollution: The silent intruder to health and well-being. In N. Garg, C. Gautam, S. Rab, M. Wan, R. Agarwal, & S. Yadav (Eds.), Handbook of Vibroacoustics, Noise and Harshness (pp. 1185–1203). Springer Nature. https://doi.org/10.1007/978-981-97-8100-3_63
Yan, S., Yuan, L., Wang, C., Diao, Q., Ren, X., Pan, X., Su, W., Chang, L., Zou, H., Shi, X., & Lin, B. (2023). A modular design approach for porous green sound-absorbing concrete for the noise barrier on high-speed railway. Journal of Building Engineering, 77, 107543. https://doi.org/10.1016/j.jobe.2023.107543
Yang, W., He, J., He, C., & Cai, M. (2020). Evaluation of urban traffic noise pollution based on noise maps. Transportation Research Part D: Transport and Environment, 87, 102516. https://doi.org/10.1016/j.trd.2020.102516
Yu, W., Jang, J.-C., Zhu, Y., Peng, J., Yang, W., & Li, K. (2024). Enhanced estimation of traffic noise levels using minute-level traffic flow data through convolutional neural network. Sustainability, 16(14), 6088. https://doi.org/10.3390/su16146088
Zaman, M., Muslim, M., & Jehangir, A. (2022). Environmental noise-induced cardiovascular, metabolic and mental health disorders: A brief review. Environmental Science and Pollution Research, 29(51), 76485–76500. https://doi.org/10.1007/s11356-022-22351-y

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales