Sensibilidad espectral de los ojos compuestos y atracción conductual a estímulos lumínicos con diferentes intensidades y longitudes de onda en Lucilia sericata (Meigen, 1826) de Colombia
PDF (English)

Cómo citar

Galindo-Cuervo, A., & Molina, J. (2023). Sensibilidad espectral de los ojos compuestos y atracción conductual a estímulos lumínicos con diferentes intensidades y longitudes de onda en Lucilia sericata (Meigen, 1826) de Colombia. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(184), 591–603. https://doi.org/10.18257/raccefyn.1885

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) es una mosca sinantrópica con distribución cosmopolita que poliniza plantas y tiene, además, importancia médica, veterinaria y forense. L. sericata es una especie diurna, por lo que la visión juega un papel importante en su orientación espacial. Evaluamos aquí los ojos compuestos de adultos de ambos sexos de L. sericata de Colombia desde el punto de vista electrofisiológico, y su atracción comportamental hacia luces LED con diferentes longitudes de onda. Los estudios electrofisiológicos mostraron una visión dicromática con picos en longitudes de onda azul (450 nm) y verde (510-530 nm) en individuos de ambos sexos. Los experimentos comportamentales realizados en un túnel luminoso de dos vías evidenciaron la atracción de las moscas hacia luces azules, blancas y rojas en las diferentes intensidades evaluadas (0,34, 0,15 y 0,034 μW/cm2). La atracción a las luces disminuyó frente a las intensidades más bajas; sin embargo, la atracción hacia las luces azules, blancas y rojas se mantuvo. Los resultados electrofisiológicos y comportamentales en condiciones de laboratorio son complementarios y explican cómo los individuos colombianos no entrenados de L. sericata interactúan con su medio ambiente utilizando las longitudes de onda del sol reflejadas bajo condiciones naturales.

https://doi.org/10.18257/raccefyn.1885

Palabras clave

Electrorretinograma | Visión a color | Califóridos | Ensayo en túnel luminoso | Señales visuales
PDF (English)

Citas

Allan, S.A., Day, J.F., Edman, J.D. (1987). Visual ecology of biting flies. Annual Review Entomology, 32, 297-317. https://www.annualreviews.org/doi/10.1146/annurev.en.32.010187.001501

Amat, E. (2008). Illustrated key for identification to genera and species of blowflies (Diptera: Calliphoridae) of Colombia. Caldasia, 30, 231-244.

Artamonov, S.D. (2012). Ecological characterization of Calliphoridae (Calliphoridae, Diptera: Insecta) of the Russian Far East. Contemporary Problems of Ecology, 5, 46-49. https://doi.org/10.1134/S1995425512010067

Autrum, H. (1950). Die Belichtungspotentiale und das sehen der Insekten (Untersuchungen an Calliphora und Dixippus). Zeitschrift für Vergleichende Physiologie, 32, 176-227. https://doi.org/10.1007/BF00344524

Autrum, H. (1958). Electrophysiological analysis of the visual systems in insects. Experimental Cell Research, 14, 426-39.

Autrum, H., Galxwitz, U. (1951). Zur Analyse der Belichtungspotentiale des Insektenauges. Zeitschrift für Vergleichende Physiologie, 33, 407-435. https://doi.org/10.1007/BF00339234

Babrekar, A.A., Kulkarni, G.R., Nath, B.B., Vidyasagar, P.B. (2004). Extracellular electrical activity from the photoreceptors of midge. Journal of Biosciences, 29, 349-353. https://doi.org/10.1007/BF02702617

Barahona-Segovia, R.M., Barceló, M. (2021). From classical collections to citizen science: Change in the distribution of the invasive flowfly Chrysomya albiceps (Wiedemann, 1819) in Chile. BioInvasions Records, 10, 45-56. https://doi.org/10.3391/bir.2021.10.1.06

Beverley, A.H. (1991). Morphological characters to identify adult Lucilia sericata (Meigen, 1826) and L. cuprina (Wiedemann, 1830) (Diptera: Calliphoridae). New Zealand Journal of Zoology, 18, 413-420. https://doi.org/10.1080/03014223.1991.10422847

Borst, A. (2009). Drosophila’s view on insect vision. Current Biology, 13, 36-47. https://doi.org/10.1016/j.cub.2008.11.001

Briscoe, A., Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471-510. https://doi.org/10.1146/annurev.ento.46.1.471

Brodie, B.S., Smith, M.A., Lawrence, J., Gries, G. (2015). Effects of floral scent, color and pollen on foraging decisions and oocyte development of common green bottle flies. PLoS ONE, 10, e0145055. https://doi.org/10.1371/journal.pone.0145055

Church, J.C.T., Courtenay, M. (2002). Maggot debridement therapy for chronic wounds. International Journal of Lower Extremity Wounds, 1, 129-134. https://doi.org/10.1177/1534734602001002008

Cilek, J.E. (2003). Attraction of colored plasticized corrugated boards to adult stable flies, Stomoxys calcitrans (Diptera: Muscidae). Florida Entomologist, 86, 420-423. https://doi.org/10.1653/0015-4040

Cresscitelli, F., Jahn, T.L. (1939). The electrical response of the dark adapted grasshopper eye to various intensities of illumination and to different qualities of light. Journal of Cellular Physiology, 18, 105-111. https://doi.org/10.1002/jcp.1030130111

Dexheimer, A.F., Outomuro, D., Dunlap, A.S., Morehouse, N.I. (2023). Spectral sensitivities of the orchid bee Euglossa dilemma. Journal of Insect Physiology, 144, 104464. https://doi.org/10.1016/j.jinsphys.2022.104464

Diclaro, J.W., Cohnstaedt, L.W., Pereira, R.M., Allan, S.A., Koehler, P.G. (2012). Behavioral and physiological response of Musca domestica to colored visual targets. Journal of Medical Entomology, 49, 94-100. https://doi.org/10.1603/ME10257

Döring, T.F., Chittka, L. (2007). Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 1, 3-16. https://doi.org/10.1007/s11829-006-9000-1

Douglass, J.K., Strausfeld, N.J. (1996). Visual motion-detection circuits in flies: Parallel directionand non-direction-sensitive pathways between the medulla and lobula plate. The Journal of Neuroscience, 16, 4551-4562. https://doi.org/10.1523/JNEUROSCI.16-15-04551

Eichorn, C., Hrabar, M., van Ryn, E.C., Brodie, B.S., Blake, A.J., Gries, G. (2017). How flies are flirting on the fly. BMC Biology, 15, 2. https://doi.org/10.1186/s12915-016-0342-6

Endler, J.A. (1993). The color of light in forests and its implications. Ecological Monographs, 63, 1-27. https://doi.org/10.2307/2937121

Figueroa, L., Linhares, A. (2002). Sinantropía de los Calliphoridae (Diptera) de Valdivia. Chile. Neotropical Entomology, 31, 233-239. https://doi.org/10.1590/S1519-566X2002000200009

Fukushi, T. (1989). Learning and discrimination of coloured papers in the walking blowfly, Lucilia cuprina. Journal of Comparative Physiology A, 166, 57-54. https://doi.org/10.1007/BF00190210

Geden, C.J. (2006). Visual targets for capture and management of house flies, Musca domestica L. Journal of Vector Ecology, 31, 152-157. https://doi.org/10.3376/1081-1710

Goldsmith, H.T. (1965). Do flies have a red receptor? The Journal of General Physiology, 49, 265 -287. https://doi.org/10.1085/jgp.49.2.265

Goodman, L.J. (1960). The landing responses of insects. I. The landing response of the fly, Lucilia sericata, and other Calliphorinae. Journal of Experimental Biology, 1, 854-878. https://doi.org/10.1242/jeb.37.4.854

Graczyk, T. K., Knight, R., Tamang, L. (2005). Mechanical transmission of human protozoan parasites by insects. Clinical Microbiology Reviews, 18, 128-132. https://doi.org/10.1128/CMR.18.1.128-132

Hall, M.J.R., Farkas, R., Kelemen, F., Hosier, M.J., El-Khoga, J.M. (1995). Orientation of agents of wound myiasis to hosts and artificial stimuli in Hungary. Medical and Veterinary Entomology, 9, 77-84. https://doi.org/10.1111/j.1365-2915.1995.tb00120.x

Hall, M.J.R., Hutchinson, R.A., Frakas, R., Adams, Z.J.O., Wyatt, N.P. (2003). A comparison of Lucitraps® and sticky targets for sampling the blowfly Lucilia sericata. Medical and Veterinary Entomology, 17, 280-287. https://doi.org/10.1046/j.1365-2915.2003.00440.x

Heisenberg, M. (1971). Separation of receptor and lamina potentials in the electroretinogram normal and mutant Drosophila. Journal of Experimental Biology, 55, 85-100. https://doi.org/10.1242/jeb.55.1.85

Hutchinson, R.A. (2000). Some behavioural responses of Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) to three odour baits using sticky boards and electrified screens. Journal Studia Dipterologica, 7, 233-240.

Hsua, P.S., Cheng, E.Y. (2012). The critical cue in pattern discrimination for the honeybee: Color or form? Journal of Insect Physiology, 7, 934-940. https://doi.org/10.1016/j.jinsphys.2012.04.009

Kelver, A., Osorio, D. (2010). From spectral information to animal colour vision: Experiments and concepts. Proceedings the Royal of Society B, 277, 1617-1625. https://doi.org/10.1098/rspb.2009.2118

Kirchner, S.M., Döring, T.F., Saucke, H. (2005). Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). Journal of Insect Physiology, 51, 1255-1260. https://doi.org/10.1016/j.jinsphys.2005.07.002

Kugel, M. (1977). The time course of the electroretinogram of compound eyes in insects and its dependence on special recording conditions. Journal of Experimental Biology, 71, 1-6. https://doi.org/10.1242/jeb.71.1.1

Laughlin, S.B., Weckström, M. (1993). Fast and slow photoreceptors- a comparative study of the functional diversity of coding and conductances in the Diptera. Journal of Comparative Physiology A, 172, 593-609. https://doi.org/10.1007/BF00213682

Lopez-Reyes, K., Armstrong, K.F., van Tol, R.W.H.M., Teulon, D.A.J., Bok, M.J. (2022). Colour vision in thrips (Thysanoptera). Philosophical Transactions of the Royal Society B, 377, 20210282. https://doi.org/10.1098/rstb.2021.0282

Lunau, K. (2014). Visual ecology of flies with particular reference to colour vision and colour preferences. Journal of Comparative Physiology A, 200, 497-512. https://doi.org/10.1007/s00359-014-0895-1

McCann, G.D., Arnett, D.W. (1972). Spectral and polarization sensitivity of the dipteran visual system. The Journal of General Physiology, 59, 534-558. https://doi.org/10.1085/jgp.59.5.534

McFadden, K., Hans, K. (2019). Foraging behavior of female Blow flies (Diptera: Calliphoridae) based on visual cues. Instars: A Journal of Student Research, 5. https://instars-ojs-tamu.tdl.org/instars/article/view/297

McNeill, C.A., Allan, S.A., Koehler, P.G., Pereira, R.M., Weeks, E.N.I. (2016). Vision in the common bed bug Cimex lectularius L. (Hemiptera: Cimicidae): Eye morphology and spectral sensitivity. Medical and Veterinary Entomology, 30, 426-434. https://doi.org/10.1111/mve.12195

Meyer, R.V., Eguchi, E. (1984). Thoughts on the possible function and origin of bioluminescence in the New Zealand glowworm Arachnocampa luminosa (Diptera: Keroplatidae), based on electrophysiological recordings of spectral responses from the eyes of male adults. New Zealand Entomologist, 8, 111-118. https://doi.org/10.1080/00779962.1984.9722483

Naka, K., Kuwabara, M. (1959). Electrical response from the compound eye of Lucilia. Journal of Insect Physiology, 3, 41-49. https://doi.org/10.1016/0022-1910(59)90057-5

Ortiz, M.I., Hincapie-Peñaloza, E., Molina, J. (2023). Electrophysiological detection of visible wavelengths of artificial lights inducing take-off in adults of Rhodnius prolixus (Hemiptera: Triatominae). Revista do Instituto de Medicina Tropical de Sao Paulo, 65, e25. https://doi.org/10.1590/S1678-9946202365025

Otálora-Luna, F., Dickens, J.C. (2010). Spectral preference and temporal modulation of photic orientation by Colorado potato beetle on a servosphere. Entomologia Experimentalis et Applicata, 138, 93-103. https://doi.org/10.1111/j.1570-7458.2010.01081.x

Peitsch, D., Fietz, A., Hertel, H., De Souza, J., Ventura, D.F., Menzel, R. (1992). The spectral input systems of hymenopteran insects and their receptor-based color vision. Journal of Comparative Physiology A, 170, 23-40. https://doi.org/10.1007/BF00190398

Public Health Monograph. (1955). Appraising Fly Control Programs 70, 137-1138.

Rydhmer, K., Bick, E., Still, L., Strand, A., Luciano, R., Helmreich, S., Beck, B.D., Gronne, C., Malmros, L., Poulsen, K., Elbaek, F., Brydegaard, M., Lemmich, J., Nikolajsen, T. (2022). Automating insect monitoring using unsupervised near-infrared sensors. Scientific Reports, 12, 2603. https://doi.org/10.1038/s41598-022-06439-6

Ruck P. (1961). Photoreceptor cell response and flicker fusion frequency in the compound eye of the fly, Lucilia sericata (Meigen). The Biological Bulletin, 120, 375-383. https://doi.org/10.2307/1539540

R Core Team. (2013). A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria. http://www.R-project.org/.

Saigusa, K., Matsumasa, M., Yashima, Y., Takamiya, M., Aoki, Y. (2009). Practical applications of molecular biological species identification of forensically important flies. Legal Medicine, 11, 344-347. https://doi.org/10.1016/j.legalmed.2009.01.026

Sanes, J.R., Zipursky, S.L. (2010). Design principles of insect and vertebrate visual systems. Neuron, 66, 15-36. https://doi.org/10.1016/j.neuron.2010.01.018

Shrestha, M., García, J.E., Chua, J.H.J., Howard, S.R., Tscheulin, T., Dorin, A., Nielsen, A., Dyer, A.G. (2019). Fluorescent pan traps affect the capture rate of insect orders in different ways. Insects, 10, 40. https://doi.org/10.3390/insects10020040

Smith, K. (1986). A manual of forensic entomology. London: The Trustees of the British Museum.

Smith, K.E., Howard, J.J., Wall, R. (2002). Contrasting responses to objects orientation and illumination by the blowflies Chrysomia chloropyga and Lucilia sericata. Entomologia Experimentalis et Applicata, 102, 183-189. https://doi.org/10.1046/j.1570-7458.2002.00938.x

Sotiraki, S., Hall J.R. (2012). A review of comparative aspects of myiasis in goats and sheep in Europe. Small Ruminant Research, 103, 75-83. https://doi.org/10.1016/j.smallrumres.2011.10.021

Stavenga, D.G. (2002). Colour in the eyes of insects. Journal of Comparative Physiology A, 188, 337-348. https://doi.org/10.1007/s00359-002-0307-9

Stavenga, D.G., Arikawa, K. (2006). Evolution of color and vision of butterflies. Arthropod Structure & Development, 35, 307-318. https://doi.org/10.1016/j.asd.2006.08.011

Steverding, D., Troscianko, T. (2004). On the role of blue shadows in the visual behavior of the tsetse flies. Proceedings of Royal of Society B, 271, 16-17. https://doi.org/10.1603/ME10257

Urech, R., Green, P.E., Rice, M.J., Brown, G.W., Webb, P., Jordan, D., Wingett, M., Mayer, D.G., Butler, L., Joshua, E., Evans, I., Toohey, L., Dadour, I.R. (2009). Suppression of populations of Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), with a novel blowfly trap. Australian Journal of Entomology, 48, 182-188. https://doi.org/10.1111/j.1440-6055.2009.00701.x

van der Kooi, C.J., Stavenga, D.G., Arikawa, K., Belusic, G., Kelber, A. (2021). Evolution of insect color vision: From spectral sensitivity to visual ecology. Annual Review of Entomology, 66, 435-461. https://doi.org/10.1146/annurev-ento-061720-071644

Wall, R., Green, C.H., French, N., Morgan, K.L. (1992). Development of an attractive target for the sheep blowfly Lucilia sericata. Medical and Veterinary Entomology, 6, 67-74. https://doi.org/10.1111/j.1365-2915.1992.tb00038.x

Wall, R., Smith, K.E. (1996). Colour discrimination by the sheep blowfly Lucilia sericata. Medical and Veterinary Entomology, 10, 235-240. https://doi.org/10.1111/j.1365-2915.1996.tb00736.x

Wooldridge, J., Scrase, L., Wall, R. (2007). Flight activity of the blowflies, Calliphora vomitoria and Lucilia sericata, in the dark. Forensic Science International, 172, 94-97. https://doi.org/10.1016/j.forsciint.2006.12.011

Yilmaz, A., Spaethe, J. (2022). Colour vision in ants (Formicidae, Hymenoptera). Philosophical Transactions of the Royal Society B, 377, 20210291. https://doi.org/10.1098/rstb.2021.0291

Yinon, U. (1970). Similarity of the electroretinogram in insects. Journal Insect Physiology, 16, 221-225. https://doi.org/10.1016/0022-1910(70)90163-0

Zablocka, T. (1972). Photopositive responses of Musca domestica and Lucilia sp. to monochromatic lights. Acta Neurobiologiae Experimentalis, 32, 55-64.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales