Soluciones exactas de agujeros negros en la teoría generalizada de Proca
Portada 45 (174) 2021
PDF

Cómo citar

Cubides Pérez, S. M., & Rodríguez García, Y. (2021). Soluciones exactas de agujeros negros en la teoría generalizada de Proca. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 45(174), 30-51. https://doi.org/10.18257/raccefyn.1276

Descargas

La descarga de datos todavía no está disponible.
Crossref
Citas en Scopus
Perfil en Google Scholar
Citado por:

Métricas Alternativas

Resumen

Con el fin de restringir la teoría generalizada de Proca y de determinar su compatibilidad con las futuras observaciones en el ámbito astrofísico, se estudiaron soluciones de agujeros negros en el marco de esta teoría. Para ello, en primer lugar, se determinaron las ecuaciones de campo gravitacional y de campo vectorial correspondientes a la acción generalizada de Proca para, posteriormente, obtener sus versiones adaptadas a agujeros negros estáticos y esféricamente simétricos. Posteriormente se encontraron soluciones de las ecuaciones de campo para diferentes tipos de acoplamientos dentro de esta teoría las cuales, debido a las condiciones establecidas para las funciones métricas, difieren de las soluciones de Reissner-Nordström y de Schwarzschild tan sólo en las funciones que describen al campo vectorial dependiendo del acomplamiento estudiado. A juzgar únicamente por este resultado, la teoría de la Relatividad General luce más atractiva que la teoría generalizada de Proca.

Palabras clave

Agujeros negros
gravedad modificada
teorías vector-tensor
https://doi.org/10.18257/raccefyn.1276
PDF

Referencias

Abbott, B. P., et al. (2017a). Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J, 848, L13.

Abbott, B. P., et al. (2017b). GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett, 119, 161101.

Abbott, B. P., et al. (2017c). Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J, 848, L12.

Abbott, R., et al. (2020). GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D, 102, 043015.

Aghanim, N., et al. (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641, A6.

Allys, E., et al. (2016a). Generalized Proca action for an Abelian vector field. JCAP, 1602, 004.

Allys, E., et al. (2016b). Generalized SU(2) Proca Theory. Phys. Rev. D, 94, 084041.

Allys, E., et al. (2016c). On the 4D generalized Proca action for an Abelian vector field. JCAP, 1609, 026.

Baker, T., et al. (2017). Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett., 119, 251301.

Beltrán Jiménez, J., & Heisenberg, L. (2016). Derivative self-interactions for a massive vector field. Phys. Lett B, 757, 405.

Beltrán Jiménez, J. & López Maroto, A. (2007). Cosmology with moving dark energy and the CMB quadrupole. Phys. Rev. D, 76, 023003.

Beltrán Jiménez, J., & Heisenberg, L. (2017). Generalized multi-Proca fields. Phys. Lett. B, 770, 16.

Ben Achour, J., et al. (2016). Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations. Phys. Rev. D, 93, 124005.

Bertone, G. & Hooper, D. (2018). History of dark matter. Rev. Mod. Phys., 90, 045002.

Cai, R. G., et al. (2013). Constraining the anisotropic expansion of the universe. Phys. Rev. D, 87, 123522.

Campanelli, L., et al. (2006). Ellipsoidal universe can solve the cosmic microwave background quadrupole problem. Phys. Rev. Lett., 97, 131302.

Carter, B. (1971). Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett., 26, 331.

Creminelli, P. & Vernizzi, F. (2017). Dark energy after GW170817 and GRB170817A. Phys. Rev. Lett., 119, 251302.

Crisostomi, M., et al. (2016). Extended scalar-tensor theories of gravity. JCAP, 1604, 044.

Crisostomi, M., et al. (2017). Higher derivative field theories: degeneracy conditions and classes. JHEP, 1706, 124.

De.ayet, C., et al. (2009a). Covariant Galileon. Phys. Rev. D, 79, 084003.

De.ayet, C., et al. (2009b). Generalized Galileons: All scalar models whose curved background extensions mantain second-order field equations and stress tensors. Phys. Rev. D, 80, 064015.

De.ayet, C., et al. (2011). From k-essence to generalized Galileons. Phys. Rev. D, 84, 064039.

De.ayet, C., & Steer, D. (2013). A formal introduction to Horndeski and Galileon theories and their generalizations. Class. Quantum Grav., 30, 214006.

de Rham, C. (2014). Massive Gravity. Living Rev. Relativ., 17, 7.

de Rham, C., et al. (2011). Resummation of Massive Gravity. Phys. Rev. Lett., 106, 231101. de Rham, C. & Gabadadze, G. (2010). Generalization of the Fierz-Pauli action. Phys. Rev. D, 82, 044020.

Dong, R., et al. (2017). Quasinormal modes of black holes in scalar-tensor theories with nonminimal derivative couplings. Phys. Rev. D, 96, 064048.

Errasti, V., et al. (2020a). Complete theory of Maxwell and Proca fields. Phys. Rev. D, 101, 045008.

Errasti, V., et al. (2020b). Maxwell-Proca theory: Definition and construction. Phys. Rev. D, 101, 045009.

Ezquiaga, J. M. & Zumalacárregui, M. (2017). Dark energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett., 119, 251304.

Gallego Cadavid, A., & Rodríguez, Y. (2019). A systematic procedure to build the beyond generalized Proca field theory. Phys. Lett. B, 798, 134958.

Ganguly, A., et al. (2018). Black hole stability under odd-parity perturbations in Horndeski gravity. Class. Quantum Grav., 35, 145008.

Gleyzes, J. et al. (2015). New Class of Consistent Scalar-Tensor Theories. Phys. Rev. Lett., 114, 211101.

Hassan, S. F., & Rosen, R. A. (2012). Bimetric gravity from ghost-free massive gravity. JHEP, 1202, 126.

Heisenberg, L. (2014). Generalization of the Proca action. JCAP, 1405, 015.

Heisenberg. L., et al. (2016). Beyond generalized Proca theories. Phys. Lett. B, 760, 617.

Heisenberg, L., et al. (2017). Black holes in vector-tensor theories. JCAP, 1708, 024.

Heisenberg, L., et al. (2018). Odd-parity stability of hairy black holes in U(1) gaugeinvariant scalar-vector-tensor theories. Phys. Rev. D, 97, 124043.

Hinterbichler, K. (2012). Theorical aspects of massive gravity. Rev. Mod. Phys, 84, 671.

Hinterbichler, K., & Rosen, R. A. (2012). Interacting spin-2 fields. JHEP, 1207, 047.

Horndeski, H. W.,. (1974). Second-order-scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys., 10, 363-384.

Kase, R., et al. (2018). Black hole perturbations in vector-tensor theories: the odd-mode analysis. JCAP, 1802, 048.

Kase, R. & Tsujikawa, S. (2019). Dark energy in Horndeski theories after GW170817: A review. Int. J. Mod. Phys. D, 28, 1942005.

Kimura, R., et al. (2017). Extended vector-tensor theories. JCAP, 1701, 002.

Kobayashi, T., et al. (2012). Black hole perturbation in the most general scalar-tensor theory with second-order field equations: The odd-parity sector. Phys. Rev. D, 85, 084025.

Kobayashi, T., et al. (2014). Black hole perturbation in the most general scalar-tensor theory with second-order field equations. II. The even-parity sector. Phys. Rev. D, 89, 084042.

Langlois, D., & Noui, K. (2016). Degenerate higher derivative theories beyond Horndeski: evading the ostrogradski instability. JCAP, 1602, 034.

Martin-Garcia, J. (2019). xact: Efficient tensor computer algebra for the wolfram language. Xact.es.

Nicolis, A., et al. (2009). Galileon as a local modification of gravity. Phys. Rev. D, 79, 064036.

Ostrogradski, M. (1850). Memoires sur les equations di.erentielles relatives au probleme des isoperimetres. Mem. Ac. St. Petersbourg VI, 4, 385.

Perlmutter, S., et al. (1999). Measurements of . and . from 42 High-Redshift Supernovae. Astrophys. J, 517, 565.

Riess, A. G., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronom. J, 116, 1009.

Robinson, D. C. (1975). Uniqueness of the Kerr black hole. Phys. Rev. Lett., 34, 905.

Rodrigues, D. C. (2008). Anisotropic cosmological constant and the CMB quadrupole anomaly. Phys. Rev. D, 77, 023534.

Rodríguez, Y., & Navarro, A. (2017). Scalar and vector Galileons. J. Phys.: Conf. Ser., 831, 012004.

Sakstein, J. & Jain, B. (2017). Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys. Rev. Lett., 119, 251303.

Tasinato, G. (2014a). Cosmic acceleration from Abelian symmetry breaking. JHEP, 1404, 067.

Tasinato, G. (2014b). A small cosmological constant from Abelian symmetry breaking. Class. Quantum Grav., 31, 225004.

Tattersall, O. J. & Ferreira, P. G. (2018). Quasinormal modes of black holes in Horndeski gravity. Phys. Rev. D, 97, 104047.

Wang, H., et al. (2017). The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics. Astrophys. J., 851, L18.

Woodard, R. P. (2007). Avoiding dark energy with 1/. modifications of gravity. Lec. Notes Phys., 720, 403.

Woodard, R. P. (2015). Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia, 10, 32243. 20

Creative Commons License

Está obra está bajo licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales