Resumen
Los modelos inflacionarios que incluyen campos vectoriales han despertado una gran interés durante la última década. Este interés se debe al hecho de que estos campos podrán contribuir, o incluso ser totalmente responsables, de la perturbación en la curvatura impresa en la radiación cósmica de fondo. Sin embargo, la necesaria ruptura de la invariancia conforme del campo vectorial durante inflación no está exenta de problemas. En los últimos años se ha mostrado que surgen una serie de inestabilidades que ponen en peligro la coherencia de la teoría cuando la invariancia conforme se rompe mediante un acoplamiento no mínimo a la gravedad. En este artículo consideramos un campo vectorial masivo, no mínimamente acoplado a la gravedad a través de la invariante Gauss-Bonnet, e investigamos si el campo vectorial puede desempeñar el rol de curvatón al tiempo que evade la aparación de inestabilidades y preserva la isotropía a gran escala.
Palabras clave
Citas
Ackerman, L., Carroll, S. M., & Wise, M. B. (2007). Imprints of a Primordial Preferred Direction on the Microwave Background. Phys.Rev., D75(), 083502. doi: 10.1103/PhysRevD.75.083502,10.1103/PhysRevD.80.069901
Ade, P. A. R., et al. (2016). Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys., 594(), A16. doi: 10.1051/0004-6361/201526681
Adshead, P., & Sfakianakis, E. I. (2017). Higgsed Gauge-flation. JHEP, 08(), 130. doi: 10.1007/JHEP08(2017)130
Aghanim, N., et al. (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641(), A6. doi: 10.1051/0004-6361/201833910
Akrami, Y., et al. (2020a). Planck 2018 results. IX. Constraints on primordial non-Gaussianity. Astron. Astrophys., 641(), A9. doi: 10.1051/0004-6361/201935891
Akrami, Y., et al. (2020b). Planck 2018 results. VII. Isotropy and Statistics of the CMB. Astron. Astrophys., 641(), A7. doi: 10.1051/0004-6361/201935201
Akrami, Y., et al. (2020c). Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641(), A10. doi: 10.1051/0004-6361/201833887
Bamba, K., & Odintsov, S. D. (2008). Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields. JCAP, 0804(), 024. doi: 10.1088/1475-7516/2008/04/024
Bennett, C., Hill, R., Hinshaw, G., Larson, D., Smith, K., et al. (2011). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies? Astrophys.J.Suppl., 192(), 17. doi: 10.1088/0067-0049/192/2/17
Bennett, C. L., et al. (2013). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys.J.Suppl.Ser., 208(), 20. doi: 10.1088/0067-0049/208/2/20
Carter, B. M., & Neupane, I. P. (2006.). Towards inflation and dark energy cosmologies from modified Gauss-Bonnet theory. JCAP, 0606(), 004. doi: 10.1088/1475-7516/2006/06/004
De Felice, A., Heisenberg, L., Kase, R., Mukohyama, S., Tsujikawa, S., & Zhang, Y.-l. (2016). Cosmology in generalized Proca theories. JCAP, 06(), 048. doi: 10.1088/1475-7516/2016/06/048
Dimastrogiovanni, E., Bartolo, N., Matarrese, S., & Riotto, A. (2010). Non-Gaussianity and Statistical Anisotropy from Vector Field Populated Inflationary Models. Adv.Astron., 2010(), 752670. doi: 10.1155/2010/752670
Dimopoulos, K. (2006). Can a vector field be responsible for the curvature perturbation in the Universe? Phys.Rev., D74(), 083502. doi: 10.1103/PhysRevD.74.083502
Dimopoulos, K. (2012). Statistical Anisotropy and the Vector Curvaton Paradigm. Int.J.Mod.Phys., D21(), 1250023. doi: 10.1142/S021827181250023X,10.1142/S0218271812920034
Dimopoulos, K., & Karciauskas, M. (2008). Non-minimally coupled vector curvaton. JHEP, 0807(), 119. doi: 10.1088/1126-6708/2008/07/119
Dimopoulos, K., Karciauskas, M., Lyth, D. H., & Rodriguez, Y. (2009). Statistical anisotropy of the curvature perturbation from vector field perturbations. JCAP, 0905(), 013. doi: 10.1088/1475-7516/2009/05/013
Dimopoulos, K., Karciauskas, M., & Wagstaff, J. M. (2010.a). Vector Curvaton without Instabilities. Phys.Lett., B683(), 298-301. doi: 10.1016/j.physletb.2009.12.024
Dimopoulos, K., Karciauskas, M., & Wagstaff, J. M. (2010.b). Vector Curvaton with varying Kinetic Function. Phys.Rev., D81(), 023522. doi: 10.1103/PhysRevD.81.023522
Emami, R., Mukohyama, S., Namba, R., & Zhang, Y.-l. (2017). Stable solutions of inflation driven by vector fields. JCAP, 03(), 058. doi: 10.1088/1475-7516/2017/03/058
Fomin, I. (2020). Gauss-Bonnet term corrections in scalar field cosmology. arXiv: 2004.08065 [gr-qc],(), .
Fomin, I., & Chervon, S. V. (2017). A new approach to exact solutions construction in scalar cosmology with a Gauss–Bonnet term. Mod. Phys. Lett. A, 32(25), 1750129.13. doi: 10.1142/S0217732317501292
Golovnev, A. (2010). Linear perturbations in vector inflation and stability issues. Phys.Rev., D81(), 023514. doi: 10.1103/PhysRevD.81.023514
Golovnev, A. (2011). On cosmic inflation in vector field theories. Class. Quant. Grav., 28(), 245018. doi: 10.1088/0264-9381/28/24/245018
Golovnev, A., Mukhanov, V. F., & Vanchurin, V. (2008.). Vector Inflation. JCAP, 0806(), 009. doi: 10.1088/1475-7516/2008/06/009
Golovnev, A., & Vanchurin, V. (2009). Cosmological perturbations from vector inflation. Phys.Rev., D79(), 103524. doi: 10.1103/PhysRevD.79.103524
Granda, L., & Jimenez, D. (2019a). Higgs Inflation with linear and quadratic curvature corrections. arXiv: 1910.11289 [gr-qc], ), .
Granda, L., & Jimenez, D. (2019b). Slow-Roll Inflation with Exponential Potential in Scalar-Tensor Models. Eur. Phys. J. C, 79(9), 772. doi: 10.1140/epjc/s10052-019-7289-z
Guo, Z.-K., & Schwarz, D. J. (2009). Power spectra from an inflaton coupled to the Gauss-Bonnet term. Phys.Rev., D80(), 063523. doi: 10.1103/PhysRevD.80.063523
Guo, Z.-K., & Schwarz, D. J. (2010). Slow-roll inflation with a Gauss-Bonnet correction. Phys.Rev., D81(), 123520. doi: 10.1103/PhysRevD.81.123520
Heisenberg, L. (2019). A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rept., 796(), 1–113. doi: 10.1016/j.physrep.2018.11.006
Heisenberg, L., Kase, R., & Tsujikawa, S. (2016). Anisotropic cosmological solutions in massive vector theories. JCAP, 11(), 008. doi: 10.1088/1475-7516/2016/11/008
Heisenberg, L., Kase, R., & Tsujikawa, S. (2018). Cosmology in scalar-vector-tensor theories. Phys. Rev. D, 98(2), 024038. doi: 10.1103/PhysRevD.98.024038
Himmetoglu, B., Contaldi, C. R., & Peloso, M. (2009a). Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature. Phys.Rev., D80(), 123530. doi: 10.1103/PhysRevD.80.123530
Himmetoglu, B., Contaldi, C. R., & Peloso, M. (2009b). Instability of anisotropic cosmological solutions supported by vector fields. Phys.Rev.Lett., 102(), 111301. doi: 10.1103/PhysRevLett.102.111301
Himmetoglu, B., Contaldi, C. R., & Peloso, M. (2009c). Instability of the ACW model, and problems with massive vectors during inflation. Phys.Rev., D79(), 063517. doi: 10.1103/PhysRevD.79.063517
Hinshaw, G., et al. (2013). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys.J.Suppl., 208(), 19. doi: 10.1088/0067-0049/208/2/19
Jiang, P.-X., Hu, J.-W., & Guo, Z.-K. (2013). Inflation coupled to a Gauss-Bonnet term. Phys.Rev., D88(), 123508. doi: 10.1103/PhysRevD.88.123508
Jimenez, D., Granda, L., & Elizalde, E. (2019). Cosmology in a model with Lagrange multiplier, Gauss–Bonnet and nonminimal kinetic couplings. Int. J. Mod. Phys. D, 28(15), 1950171. doi: 10.1142/S0218271819501712
Kanti, P., Gannouji, R., & Dadhich, N. (2015). Gauss-Bonnet Inflation. Phys. Rev., D92(4), 041302. doi: 10.1103/PhysRevD.92.041302
Karciauskas, M., & Lyth, D. H. (2010). On the health of a vector field with (RA2 )/6 coupling to gravity. JCAP, 1011(), 023. doi: 10.1088/1475-7516/2010/11/023
Kleidis, K., & Oikonomou, V. (2019). A Study of an Einstein Gauss-Bonnet Quintessential Inflationary Model. Nucl. Phys. B, 948(), 114765. doi: 10.1016/j.nuclphysb.2019.114765
Koh, S., Lee, B.-H., Lee, W., & Tumurtushaa, G. (2014). Observational constraints on slow-roll inflation coupled to a Gauss-Bonnet term. Phys. Rev. D, 90(6), 063527. doi:10.1103/PhysRevD.90.063527
Koh, S., Lee, B.-H., & Tumurtushaa, G. (2017). Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term. Phys. Rev. D, 95(12), 123509. doi: 10.1103/PhysRevD.95.123509
Komatsu, E., et al. (2011). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys.J.Suppl., 192(), 18. doi: 10.1088/0067-0049/192/2/18
Lyth, D. H., Malik, K. A., & Sasaki, M. (2005). A General proof of the conservation of the curvature perturbation. JCAP, 0505(), 04. doi: 10.1088/1475-7516/2005/05/004
Lyth, D. H., & Rodriguez, Y. (2005.). The Inflationary prediction for primordial non-Gaussianity. Phys.Rev.Lett., 95(), 121302. doi: 10.1103/PhysRevLett.95.121302
Lyth, D. H., & Wands, D. (2002). Generating the curvature perturbation without an inflaton. Phys. Lett. B, 524(), 5–14. doi: 10.1016/S0370-2693(01)01366-1
Maleknejad, A., & Sheikh-Jabbari, M. (2011). Non-Abelian Gauge Field Inflation. Phys.Rev., D84(), 043515. doi: 10.1103/PhysRevD.84.043515
Maleknejad, A., & Sheikh-Jabbari, M. (2013). Gauge-flation: Inflation From Non-Abelian Gauge Fields. Phys.Lett., B723(), 224-228. doi: 10.1016/j.physletb.2013.05.001
Maleknejad, A., Sheikh-Jabbari, M., & Soda, J. (2013). Gauge Fields and Inflation. Phys.Rept., 528(), 161-261. doi: 10.1016/j.physrep.2013.03.003
Mathew, J., & Shankaranarayanan, S. (2016). Low scale Higgs inflation with Gauss–Bonnet coupling. Astropart. Phys., 84(), 1–7. doi: 10.1016/j.astropartphys.2016.07.004
Navarro, A. A., & Rodriguez, Y. (2013.). The Vector Curvaton. AIP Conf.Proc., 1548(), 277-282. doi: 10.1063/1.4817057
Nieto, C. M., & Rodriguez, Y. (2016). Massive Gauge-flation. Mod. Phys. Lett. A, 31(21), 1640005. doi: 10.1142/S0217732316400058
Nojiri, S., Odintsov, S. D., & Sasaki, M. (2005). Gauss-Bonnet dark energy. Phys. Rev. D, 71(), 123509. doi: 10.1103/PhysRevD.71.123509
Nozari, K., & Rashidi, N. (2013). DBI inflation with a nonminimally coupled Gauss-Bonnet term. Phys.Rev., D88(8), 084040. doi: 10.1103/PhysRevD.88.084040
Okada, N., & Okada, S. (2016). Simple inflationary models in Gauss–Bonnet braneworld cosmology. Class. Quant. Grav., 33(12), 125034. doi: 10.1088/0264-9381/33/12/125034
Oliveros, A. (2017). Slow-roll inflation from massive vector fields non-minimally coupled to gravity. Astrophys. Space Sci., 362(1), 19. doi: 10.1007/s10509-016-2998-3
Peiris, H., et al. (2003). First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for inflation. Astrophys.J.Suppl., 148(), 213-231. doi: 10.1086/377228
Perivolaropoulos, L. (2014). Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy. Galaxies, 2(), 22-61. doi: 10.3390/galaxies2010022
Pozdeeva, E. (2020). Generalization of cosmological attractor approach to Einstein-Gauss-Bonnet gravity. arXiv: 2005.10133 [gr-qc],(), .
Rashidi, N., & Nozari, K. (2020). Gauss-Bonnet Inflation after Planck2018. Astrophys. J., 890(), 58. doi: 10.3847/1538-4357/ab6a10
Rodr´ .guez, Y., & Navarro, A. A. (2018). Non-Abelian S-term dark energy and inflation. Phys. Dark Univ., 19(), 129–136. doi: 10.1016/j.dark.2018.01.003
Sadeghi, J., Setare, M. R., & Banijamali, A. (2009). Non-minimal Maxwell-Modified Gauss-Bonnet Cosmologies: Inflation and Dark Energy. Eur.Phys.J., C64(), 433-438. doi: 10.1140/epjc/s10052-009-1152-6
Sasaki, M., & Stewart, E. D. (1996). A general analytic formula for the spectral index of the density perturbations produced during inflation. Prog.Theor.Phys., 95(), 71-78. doi: 10.1143/PTP.95.71
Satoh, M. (2010). Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections. JCAP, 1011(), 024. doi: 10.1088/1475-7516/2010/11/024
Satoh, M., & Soda, J. (2008). Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation. JCAP, 0809(), 019. doi: 10.1088/1475-7516/2008/09/019
Schwarz, D. J., Copi, C. J., Huterer, D., & Starkman, G. D. (2016). CMB Anomalies after Planck. Class. Quant. Grav., 33(18), 184001. doi: 10.1088/0264-9381/33/18/184001
Soda, J. (2012). Statistical Anisotropy from Anisotropic Inflation. Class.Quant.Grav., 29(), 083001. doi: 10.1088/0264-9381/29/8/083001
Spergel, D., et al. (2007.). Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys.J.Suppl., 170(), 377. doi: 10.1086/513700
Starobinsky, A. A. (1985). Multicomponent de Sitter (Inflationary) Stages and the Generation of Perturbations. JETP Lett., 42(), 152-155.
Tsujikawa, S., Sami, M., & Maartens, R. (2004). Observational constraints on braneworld inflation: The Effect of a Gauss-Bonnet term. Phys. Rev. D, 70(), 063525. doi: 10.1103/PhysRevD.70.063525
van de Bruck, C., Dimopoulos, K., & Longden, C. (2016). Reheating in Gauss-Bonnetcoupled inflation. Phys. Rev. D, 94(2), 023506. doi: 10.1103/PhysRevD.94.023506
van de Bruck, C., Dimopoulos, K., Longden, C., & Owen, C. (2017). Gauss-Bonnetcoupled Quintessential Inflation. arXiv: 1707.06839 [astro-ph.CO],(), .
van de Bruck, C., & Longden, C. (2016). Higgs Inflation with a Gauss-Bonnet term in the Jordan Frame. Phys. Rev. D, 93(6), 063519. doi: 10.1103/PhysRevD.93.063519
Wagstaff, J. M., & Dimopoulos, K. (2011). Particle Production of Vector Fields: Scale Invariance is Attractive. Phys.Rev., D83(), 023523. doi: 10.1103/PhysRevD.83.023523
Yi, Z., Gong, Y., & Sabir, M. (2018). Inflation with Gauss-Bonnet coupling. Phys. Rev. D, 98(8), 083521. doi: 10.1103/PhysRevD.98.083521
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales