Métodos de obtención y aplicación de nanopartículas magnéticas en el tratamiento y diagnóstico del cáncer: una revisión
PDF

Archivos suplementarios

Material suplementario

Cómo citar

Lozano-Ocaña, Y., Tubón-Usca, I. ., Vaca-Altamirano, G. ., & Tubón-Usca, G. (2022). Métodos de obtención y aplicación de nanopartículas magnéticas en el tratamiento y diagnóstico del cáncer: una revisión. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 46(178), 7–26. https://doi.org/10.18257/raccefyn.1560

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

El cáncer es una enfermedad heterogénea con múltiples mecanismos de evasión de la respuesta inmunitaria, de resistencia, proliferación y supervivencia, cuya tasa de mortalidad, según la Organización Mundial de la Salud (OMS), ha aumentado debido a los malos hábitos de la población (tabaco, alcohol, drogas, entre otros), por lo que, sumado a sistemas de salud deficientes e ineficientes, especialmente en los países con ingresos bajos y medios, se ha convertido en la segunda causa de muerte a nivel mundial. La nanomedicina ha permitido la investigación y desarrollo de nuevos sistemas terapéuticos con nanopartículas magnéticas. El objetivo de esta revisión bibliográfica es reportar los principales métodos de obtención de nanopartículas magnéticas y discutir brevemente su funcionalización y aplicación en el campo de la oncología, mediante una búsqueda bibliográfica en las bases de datos científicas con artículos de alto impacto y con mayor número de citaciones. Utilizando criterios de inclusión y exclusión, se establecieron indicadores específicos de las nanopartículas magnéticas y las aplicaciones biomédicas. Los resultados evidenciaron que las nanopartículas más empleadas son las de óxido de hierro superparamagnéticas (superparamagnetic iron oxide nanoparticles, SPION) debido a su multifuncionalidad y sus excelentes propiedades físicoquímicas y biológicas. Además, poseen una alta citotoxicidad en células cancerígenas, produciendo así un alto porcentaje de muerte celular. Por último, los tratamientos alternativos, como la hipertermia magnética, la terapia genética y la administración de fármacos, reducen los efectos secundarios con respecto a los tratamientos convencionales, y por lo que son prometedores. Asimismo, los agentes de contraste utilizados en resonancia magnética mejoran el diagnóstico.

https://doi.org/10.18257/raccefyn.1560

Palabras clave

Aplicaciones biomédicas | Cáncer | Diagnóstico | Nanopartículas magnéticas | Terapia
PDF

Referencias

Ak, G., Yilmaz, H., Güneş, A., Hamarat-Sanlier, S. (2018). In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology. 46 (sup1): 926-937. https://doi.org/10.1080/21691401.2018.1439838

Angelopoulou, A., Voulgari, E., Kolokithas-Ntoukas, A., Bakandritsos, A., Avgoustakis, K. (2018). Magnetic Nanoparticles for the Delivery of Dapagliflozin to Hypoxic Tumors: Physicochemical Characterization and Cell Studies. AAPS PharmSciTech. 19 (2): 621-633. https://doi.org/10.1208/s12249-017-0874-2

Azhdarzadeh, M., Atyabi, F., Saei, A. A., Varnamkhasti, B. S., Omidi, Y., Fateh, M., Ghavami, M., Shanehsazzadeh, S., Dinarvand, R. (2016). Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids and Surfaces B: Biointerfaces. 143: 224-232. https://doi.org/10.1016/j.colsurfb.2016.02.058

Banerjee, R., Katsenovich, Y., Lagos, L., McIintosh, M., Zhang, X., Li, C.-Z. (2010). Nanomedicine: Magnetic Nanoparticles and their Biomedical Applications. Current Medicinal Chemistry. 17 (27): 3120-3141. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=0929-8673&volume=17&issue=27&spage=3120

Blasto, A. & Caballero, C. (2019). Toxicidad de los tratamientos oncológicos—SEOM: Sociedad Española de Oncología Médica © 2019. Organización Española de Oncología Médica. https://seom.org/guia-actualizada-de-tratamientos/toxicidad-de-los-tratamientosoncologicos?showall=1

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68 (6): 394-424. https://doi.org/10.3322/caac.21492

Cardoso, V. F., Francesko, A., Ribeiro, C., Bañobre-López, M., Martins, P., Lanceros-Méndez, S. (2018). Advances in Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials. 7 (5): 1700845. https://doi.org/10.1002/adhm.201700845

Coral, D. F. & Mera, J. A. (2017). Una guía para el estudio de nanopartículas magnéticas de óxidos de hierro con aplicaciones biomédicas. Parte II. Ingeniería y Ciencia. 13 (26): 207-232. https://doi.org/10.17230/ingciencia.13.26.8

Farzin, A., Etesami, S. A., Quint, J., Memic, A., Tamayol, A. (2020). Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Advanced Healthcare Materials. 9 (9): 1901058. https://doi.org/10.1002/adhm.201901058

Feng, Z.-Q., Yan, K., Li, J., Xu, X., Yuan, T., Wang, T., Zheng, J. (2019). Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. Materials Science and Engineering: C. 104: 110001. https://doi.org/10.1016/j.msec.2019.110001

Fernández, K. C. (2013). Síntesis y caracterización de nanopartículas magnéticas. UNAM. León, Guanajuato.p. 31-32. https://cio.repositorioinstitucional.mx/jspui/bitstream/1002/559/1/15611.pdf

Frimpong, R. A. & Hilt, J. Z. (2010). Magnetic nanoparticles in biomedicine: Synthesis,functionalization and applications. Nanomedicine. 5 (9): 1401-1414. https://doi.org/10.2217/nnm.10.114

Gallo, J., Long, N. J., Aboagye, E. O. (2013). Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chemical Society Reviews. 42 (19): 7816. https://doi.org/10.1039/c3cs60149h

Gao, N., Bozeman, E. N., Qian, W., Wang, L., Chen, H., Lipowska, M., Staley, C. A., Wang, Y. A.,Mao, H., Yang, L. (2017). Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery. Theranostics. 7 (6): 1689-1704. https://doi.org/10.7150/thno.18125

Gobbo, O. L., Sjaastad, K., Radomski, M. W., Volkov, Y., Prina-Mello, A. (2015). Magnetic Nanoparticles in Cancer Theranostics. Theranostics. 5 (11): 1249-1263. https://doi.org/10.7150/thno.11544

Gómez-Garzón, M. (2018). Nanomateriales, nanopartículas y síntesis verde. Revista Repertorio de Medicina y Cirugía. 27 (2): Article 2. https://doi.org/10.31260/RepertMedCir.v27.n2.2018.191

Gómez-Sotomayor, R., Ahualli, S., Viota, J. L., Rudzka, K., Delgado, Á. V. (2015). Iron/Magnetite Nanoparticles as Magnetic Delivery Systems for Antitumor Drugs. Journal of Nanoscience and Nanotechnology. 15 (5): 3507-3514. https://doi.org/10.1166/jnn.2015.9856

Guisasola, E., Asín, L., Beola, L., de la Fuente, J. M., Baeza, A., Vallet-Regí, M. (2018). Beyond Traditional Hyperthermia: In Vivo Cancer Treatment with Magnetic-Responsive Mesoporous Silica Nanocarriers. ACS Applied Materials & Interfaces. 10 (15): 12518-12525. https://doi.org/10.1021/acsami.8b02398

Hauksdóttir, H. L. & Webster, T. J. (2018). Selenium and Iron Oxide Nanocomposites for Magnetically-Targeted Anti-Cancer Applications. Journal of Biomedical Nanotechnology. 14 (3): 510-525. https://doi.org/10.1166/jbn.2018.2521

Hu, J., Youssefian, S., Obayemi, J., Malatesta, K., Rahbar, N., Soboyejo, W. (2018). Investigation of adhesive interactions in the specific targeting of Triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells. Acta Biomaterialia. 71: 363-378. https://doi.org/10.1016/j.actbio.2018.02.011

Huang, G., Chen, H., Dong, Y., Luo, X., Yu, H., Moore, Z., Bey, E. A., Boothman, D. A., Gao, J. (2013). Superparamagnetic Iron Oxide Nanoparticles: Amplifying ROS Stress to Improve Anticancer Drug Efficacy. Theranostics. 3 (2): 116-126. https://doi.org/10.7150/thno.5411

International Day of Radiology-IDoR. (2012). Haciendo visible el cáncer El rol del diagnóstico por imágenes en oncología. ESR – Sociedad Europea de Radiología. https://es.scribd.com/document/437698237/IDOR-2012-OncologyImaging-Spanish-pdf

Instituto Nacional del Cáncer. (2012). Aspectos generales de los exámenes de detección del cáncer(PDQ®)–Versión para pacientes—Instituto Nacional del Cáncer (nciglobal,ncienterprise) (PdqCancerInfoSummary). Instituto Nacional del Cáncer. https://www.cancer.gov/espanol/cancer/deteccion/aspectos-generales-deteccion-paciente-pdq

Jeun, M., Lee, S., Kyeong Kang, J., Tomitaka, A., Wook Kang, K., Il Kim, Y., Takemura, Y., Chung, K.-W., Kwak, J., Bae, S. (2012). Physical limits of pure superparamagnetic Fe 3 O 4 nanoparticles for a local hyperthermia agent in nanomedicine. Applied Physics Letters. 100(9): 092406. https://doi.org/10.1063/1.3689751

Kossatz, S., Grandke, J., Couleaud, P., Latorre, A., Aires, A., Crosbie-Staunton, K., Ludwig, R., Dähring, H., Ettelt, V., Lazaro-Carrillo, A., Calero, M., Sader, M., Courty, J., Volkov, Y., Prina-Mello, A., Villanueva, A., Somoza, Á., Cortajarena, A. L., Miranda, R., Hilger,I. (2015). Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Research. 17 (1): 66. https://doi.org/10.1186/s13058-015-0576-1

Kossatz, S., Ludwig, R., Dähring, H., Ettelt, V., Rimkus, G., Marciello, M., Salas, G., Patel, V., Teran, F. J., Hilger, I. (2014). High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area. Pharmaceutical Research. 31 (12): 3274-3288. https://doi.org/10.1007/s11095-014-1417-0

Lattuada, M. & Hatton, T. A. (2011). Synthesis, properties and applications of Janus nanoparticles. Nano Today. 6 (3): 286-308. https://doi.org/10.1016/j.nantod.2011.04.008

Lechuga, L. M. (2011). Nanomedicina: aplicación de la nanotecnología en la salud. Grupo 5. https://digital.csic.es/handle/10261/44635

Lee, H. J., Nguyen, Y. T. C., Muthiah, M., Vu-Quang, H., Namgung, R., Kim, W. J., Yu,M. K., Jon, S., Lee, I. K., Jeong, Y. Y., Park, I. K. (2012). MR Traceable Delivery of p53 Tumor Suppressor Gene by PEI-Functionalized Superparamagnetic Iron Oxide Nanoparticles. Journal of Biomedical Nanotechnology. 8 (3): 361-371. https://doi.org/10.1166/jbn.2012.1407

Lee, J.-H., Jang, J., Choi, J., Moon, S. H., Noh, S., Kim, J., Kim, J.-G., Kim, I.-S., Park, K.I., Cheon, J. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology. 6 (7): 418-422. https://doi.org/10.1038/nnano.2011.95

Liao, Z., Wang, H., Lv, R., Zhao, P., Sun, X., Wang, S., Su, W., Niu, R., Chang, J. (2011).Polymeric Liposomes-Coated Superparamagnetic Iron Oxide Nanoparticles as Contrast Agent for Targeted Magnetic Resonance Imaging of Cancer Cells. Langmuir. 27 (6): 3100-3105. https://doi.org/10.1021/la1050157

Lim, S.-W., Kim, H.-W., Jun, H.-Y., Park, S.-H., Yoon, K.-H., Kim, H.-S., Jon, S., Yu, M.K., Juhng, S.-K. (2011). TCL-SPION-enhanced MRI for the Detection of Lymph Node Metastasis in Murine Experimental Model. Academic Radiology. 18 (4): 504-511. https://doi.org/10.1016/j.acra.2010.10.017

Liu, L., Liu, L., Li, Y., Huang, X., Gu, D., Wei, B., Su, D., Jin, G. (2019). Ultrasmall superparamagnetic nanoparticles targeting E-selectin: Synthesis and effects in mice in vitro and in vivo. International Journal of Nanomedicine. 14: 4517-4528. https://doi.org/10.2147/IJN.S199571

Lu, Y., Xu, Y.-J., Zhang, G., Ling, D., Wang, M., Zhou, Y., Wu, Y.-D., Wu, T., Hackett, M. J., Hyo Kim, B., Chang, H., Kim, J., Hu, X.-T., Dong, L., Lee, N., Li, F., He, J.-C., Zhang, L., Wen, H.-Q., Zou, D.-H. (2017). Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nature Biomedical Engineering. 1 (8): 637-643. https://doi.org/10.1038/s41551-017-0116-7

Natesan, S., Ponnusamy, C., Sugumaran, A., Chelladurai, S., Shanmugam Palaniappan, S., Palanichamy, R. (2017). Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. International Journal of Biological Macromolecules.104: 1853-1859. https://doi.org/10.1016/j.ijbiomac.2017.03.137

Organización Mundial de la Salud-OMS. (2021). Cáncer. Organización Mundial de la Salud. https://www.who.int/es/news-room/fact-sheets/detail/cancer

Pereira, C., Pereira, A. M., Fernandes, C., Rocha, M., Mendes, R., Fernández-García, M. P., Guedes, A., Tavares, P. B., Grenèche, J.-M., Araújo, J. P., Freire, C. (2012).Superparamagnetic MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chemistry of Materials. 24 (8): 1496-1504. https://doi.org/10.1021/cm300301c

Pérez-Herrero, E. & Fernández-Medarde, A. (2015). Advanced targeted therapies in cancer:Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics. 93: 52-79. https://doi.org/10.1016/j.ejpb.2015.03.018

Pointer, K. B., Pitroda, S. P., Weichselbaum, R. R. (2021). Radiotherapy and immunotherapy: Open questions and future strategies. Trends in Cancer. 8 (1): 9-20. Elsevier, Chicago. https://doi.org/10.1016/j.trecan.2021.10.003

Prijic, S., Prosen, L., Cemazar, M., Scancar, J., Romih, R., Lavrencak, J., Bregar, V. B., Coer, A., Krzan, M., Znidarsic, A., Sersa, G. (2012). Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials. 33 (17): 4379-4391. https://doi.org/10.1016/j.biomaterials.2012.02.061

Rahim, S., Jan Iftikhar, F., Malik, M. I. (2020). Biomedical applications of magnetic nanoparticles. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications (pp. 301-328). Elsevier. https://doi.org/10.1016/B978-0-12-816960-5.00016-1

Ramos, M. & Castillo, C. (2011). Aplicaciones biomédicas de las nanopartículas magnéticas. Ide@s CONCYTEG. 6 (72): 629-646. http://oa.upm.es/13652/

Soleymani, M., Khalighfard, S., Khodayari, S., Khodayari, H., Kalhori, M. R., Hadjighassem, M. R., Shaterabadi, Z., Alizadeh, A. M. (2020). Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Scientific Reports. 10 (1): 1695. https://doi.org/10.1038/s41598-020-58605-3

Valencia_Barrón, J. P. (2013). Síntesis y caracterizacíon de cristales de oxicloruro de bismuto por métodos Hidrotermal y Solvotermal en presencia de diferentes agentes estabilizantes Maestría, Universidad Iberoamericana. http://www.bib.uia.mx/tesis/pdf/015743/015743.pdf

Wang, R., Billone, P. S., Mullett, W. M. (2013). Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. Journal of Nanomaterials. 2013: 1-12. https://doi.org/10.1155/2013/629681

Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J. (2015). Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release. 200: 138-157. https://doi.org/10.1016/j.jconrel.2014.12.030

Wu, H., Liu, G., Wang, X., Zhang, J., Chen, Y., Shi, J., Yang, H., Hu, H., Yang, S. (2011). Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomaterialia. 7 (9): 3496-3504. https://doi.org/10.1016/j.actbio.2011.05.031

Yallapu, M. M., Othman, S. F., Curtis, E. T., Bauer, N. A., Chauhan, N., Kumar, D., Jaggi, M., Chauhan, S. C. (2012). Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. International Journal of Nanomedicine. 7: 1761-1779. https://doi.org/10.2147/IJN.S29290

Yallapu, M. M., Othman, S. F., Curtis, E. T., Gupta, B. K., Jaggi, M., Chauhan, S. C. (2011).Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 32 (7): 1890-1905. https://doi.org/10.1016/j.biomaterials.2010.11.028

Yigit, M. V., Moore, A., Medarova, Z. (2012). Magnetic Nanoparticles for Cancer Diagnosis and Therapy. Pharmaceutical Research. 29 (5): 1180-1188. https://doi.org/10.1007/s11095-012-0679-7

Yin, P. T., Shah, S., Pasquale, N. J., Garbuzenko, O. B., Minko, T., Lee, K.-B. (2016). Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials. 81: 46-57. https://doi.org/10.1016/j.biomaterials.2015.11.023

Yoo, M.-K., Park, I.-K., Lim, H.-T., Lee, S.-J., Jiang, H.-L., Kim, Y.-K., Choi, Y.-J., Cho, M.-H., Cho, C.-S. (2012). Folate–PEG–superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomaterialia. 9: 3006-3013.

Zaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L. K., Paschepari, S. R., Azizi, H., Torkamandi, S., Tavakkoly-Bazzaz,J. (2017). New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy. 24 (6): 233-243. https://doi.org/10.1038/cgt.2017.16

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales