La tolerancia inmunitaria a las infecciones virales en murciélagos y su relación con las pandemias
PDF

Cómo citar

García, L. F., & Díaz, F. J. (2023). La tolerancia inmunitaria a las infecciones virales en murciélagos y su relación con las pandemias. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(184), 484–504. https://doi.org/10.18257/raccefyn.1939

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Los murciélagos o quirópteros (orden Chiroptera) representan el 20 % de los mamíferos vivientes. Se han adaptado a todos los nichos ecológicos existentes (exceptuando la Antártida y el Ártico) como producto de procesos evolutivos que les permiten sobrevivir y reproducirse en condiciones muy diferentes. Además, los murciélagos son los únicos mamíferos voladores, lo que exige una alta carga metabólica y lleva a la liberación de moléculas genotóxicas y proinflamatorias. Sin embargo, los Chiroptera han desarrollado mecanismos para contrarrestar estos efectos dañinos que, paralelamente, se asocian con una vida prolongada, baja incidencia de cáncer y tolerancia a las infecciones virales. Los murciélagos son reservorios de una gran variedad de virus sin presentar enfermedad. Su resistencia a las infecciones virales se ha explicado por una tolerancia inmunitaria que permite que los virus permanezcan en estos hospederos sin causar daño tisular o enfermedad. La tolerancia se rompe cuando los murciélagos sufren estrés por alteración de los ecosistemas donde habitan o por reducción de sus fuentes de alimento, situaciones que ocurren generalmente por efecto antrópico. Los principales mecanismos de la tolerancia inmunitaria a las infecciones virales en los quirópteros son la activación constitutiva de los genes estimulados por interferón tipo I con actividad antiviral y la disminución de la activación del inflamasoma, lo que permite controlar la replicación viral sin inducir respuestas inflamatorias que causen daño tisular. El estudio de la tolerancia a las infecciones en los quirópteros puede conducir al desarrollo de nuevas formas de prevención y tratamiento de las infecciones epizoóticas.

https://doi.org/10.18257/raccefyn.1939

Palabras clave

Chiroptera | Murciélagos | Virus | Tolerancia | Interferón | Inflamasoma
PDF

Citas

Agnarsson, I., Zambrana-Torrelio, C. M., Flores-Saldana, N. P., May-Collado, L. J. (2011). A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr, 3, Rrn1212. https://doi.org/10.1371/currents.RRN1212

Ahn, M., Anderson, D. E., Zhang, Q., Tan, C. W., Lim, B. L., Luko, K., Wen, M., Chia, W. N., Mani, S., Wang, L. C., Ng, J. H. J., Sobota, R. M., Dutertre, C.-A., Ginhoux, F., Shi, Z.-L.. Irving, A. T., Wang, L.-F. (2019). Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 4(5), 789-799. https://doi.org/10.1038/s41564-019-0371-3

Ahn, M., Cui, J., Irving, A., Wang, L. (2016). Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Scientific Reports, 6, 21722. https://doi.org/10.1038/srep21722

Alt, F. W., Oltz, E. M., Young, F., Gorman, J., Taccioli, G., Chen, J. (1992). VDJ recombination. Immunology Today, 13(8), 306-314.

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450-452. https://doi.org/10.1038/s41591-020-0820-9

Ayres, J. S., Schneider, D. S. (2012). Tolerance of Infections. Annual Review of Immunology, 30 (1), 271-294. https://doi.org/10.1146/annurev-immunol-020711-075030

Baker, M. L., Schountz, T., Wang, L.-F. (2013). Antiviral Immune Responses of Bats: A Review. Zoonoses and Public Health, 60(1), 104-116. https://doi.org/10.1111/j.1863-2378.2012.01528.x

Banerjee, A., Baker, M. L., Kulcsar, K., Misra, V., Plowright, R., Mossman, K. (2020). Novel Insights Into Immune Systems of Bats. Front Immunol, 11, 26. https://doi.org/10.3389/fimmu.2020.00026

Banerjee, A., Misra, V., Schountz, T., Baker, M. L. (2018). Tools to study pathogen-host interactions in bats. Virus Research, 248, 5-12. https://doi.org/10.1016/j.virusres.2018.02.013

Banerjee, A., Zhang, X., Yip, A., Schulz, K. S., Irving, A. T., Bowdish, D., . . . Mossman, K. (2020). Positive Selection of a Serine Residue in Bat IRF3 Confers Enhanced Antiviral Protection. iScience, 23(3), 100958. https://doi.org/10.1016/j.isci.2020.100958

Banyard, A. C., Evans, J. S., Luo, T. R., Fooks, A. R. (2014). Lyssaviruses and bats: emergence and zoonotic threat. Viruses, 6(8), 2974-2990.

Baumgartner, C. K., Malherbe, L. P. (2011). Antigen-driven T-cell repertoire selection during adaptive immune responses. Immunology & Cell Biology, 89(1), 54-59. https://doi.org/10.1038/icb.2010.117

Bird, B. H., Mazet, J. A. K. (2018). Detection of Emerging Zoonotic Pathogens: An Integrated One Health Approach. Annual Review of Animal Biosciences, 6(1), 121-139. https://doi.org/10.1146/annurev-animal-030117-014628

Blackwood, J. C., Streicker, D. G., Altizer, S., Rohani, P. (2013). Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proceedings of the National Academy of Sciences, 110(51), 20837-20842. https://doi.org/10.1073/pnas.1308817110

Bouma, H. R., Carey, H. V., Kroese, F. G. M. (2010). Hibernation: the immune system at rest? Journal of Leukocyte Biology, 88(4), 619-624. https://doi.org/10.1189/jlb.0310174

Boyles, J. G., Cryan, P. M., McCracken, G. F., Kunz, T. H. (2011). Economic Importance of Bats in Agriculture. Science, 332(6025), 41-42. https://doi.org/10.1126/science.1201366

Boys, I. N., Xu, E., Mar, K. B., De La Cruz-Rivera, P., Eitson, J. L., Moon, B., Schoggins, J. W. (2020). RTP4 Is a Potent IFN-Inducible Antiflavivirus Effector Engaged in a Host-Virus Arms Race in Bats and Other Mammals. Cell Host & Microbe, 28(5), 712-723. https://doi.org/10.1016/j.chom.2020.09.014

Bratsch, S., Wertz, N., Chaloner, K., Kunz, T. H., Butler, J. E. (2011). The little brown bat, M. lucifugus, displays a highly diverse VH, DH and JH repertoire but little evidence of somatic hypermutation. Developmental & Comparative Immunology, 35(4), 421-430.

Brook, C. E., Boots, M., Chandran, K., Dobson, A. P., Drosten, C., Graham, A. L., Grenfell B. T., Müller M. A., Ng M., Lin-Fa Wang L.-Fa., van Leeuwen, A. (2020). Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. eLife, 9, e48401. https://doi.org/10.7554/eLife.48401

Brook, C. E., Dobson, A. P. (2015). Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172-180. http://www.sciencedirect.com/science/article/pii/S0966842X14002480

Brunet-Rossinni, A. K. (2004). Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mechanisms of Ageing and Development, 125(1), 11-20. https://doi.org/10.1016/j.mad.2003.09.003

Burke, B., Rocha, S. M., Zhan, S., Eckley, M., Reasoner, C., Addetia, A., Lewis, J., Fagre,A., Charley, P., Richt, J. A., Weiss, S. R., Tjalkens, R. B. Veesler, D., Aboellail, T., Schountz, T. (2023). Regulatory T Cell-like Response to SARS-CoV-2 in Jamaican Fruit Bats (Artibeus jamaicensis) Transduced with Human ACE2. bioRxiv, 2023.2002.2013.528205. https://doi.org/10.1101/2023.02.13.528205

Caicedo, Y., Paez, A., Kuzmin, I., Niezgoda, M., Orciari, L. A., Yager, P. A., Recuenco, S., Franka, R., Velasco-Villa, A., Willoughby, R. E., Jr. (2015). Virology, Immunology and Pathology of Human Rabies During Treatment. The Pediatric Infectious Disease Journal, 34(5). https://journals.lww.com/pidj/Fulltext/2015/05000/Virology,_Immunology_and_Pathology_of_Human_Rabies.18.aspx

Calderón, A., Guzmán, C., Mattar, S., Rodríguez, V., Acosta, A., Martínez, C. (2019). Frugivorous bats in the Colombian Caribbean region are reservoirs of the rabies virus. Annals of Clinical Microbiology and Antimicrobials, 18(1), 11. https:/doi.org/10.1186/s12941-019-0308-y

Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., Schountz, T. (2006). Bats: Important Reservoir Hosts of Emerging Viruses. Clinical Microbiology Reviews, 19 (3), 531-545. https:/doi.org/10.1128/CMR.00017-06

Cariou, M., Picard, L., Guéguen, L., Jacquet, S., Cimarelli, A., Fregoso, O. I., Molaro, A., Navratil, V., Etienne, L. (2022). Distinct evolutionary trajectories of SARS-CoV-2-interacting proteins in bats and primates identify important host determinants of COVID-19. Proceedings of the National Academy of Sciences, 119(35), e2206610119. https:/doi.org/10.1073/pnas.2206610119

Carrington, C. V., Foster, J. E., Zhu, H. C., Zhang, J. X., Smith, G. J., Thompson, N., Auguste A. J., Ramkissoon, V., Abiodun A. Adesiyun, A. A., Guan, Y. (2008). Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis, 14(12), 1890-1893. https:/doi.org/10.3201/eid1412.080642

Chen, L., Liu, B., Yang, J., Jin, Q. (2014). DBatVir: the database of bat-associated viruses. Database, 2014, bau021. https:/doi.org/10.1093/database/bau021

Chornelia, A., Lu, J., Hughes, A. C. (2022). How to Accurately Delineate Morphologically Conserved Taxa and Diagnose Their Phenotypic Disparities: Species Delimitation in Cryptic Rhinolophidae (Chiroptera). Frontiers in Ecology and Evolution, 10. https:/doi.org/10.3389/

fevo.2022.854509

Christie, M. J., Irving, A. T., Forster, S. C., Marsland, B. J., Hansbro, P. M., Hertzog, P. J., Nold-Petry, C. A., Nold, M. F. (2021). Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Science Immunology, 6(63), eabd0205. https:/doi.org/10.1126/sciimmunol.abd0205

Cowled, C., Baker, M., Tachedjian, M., Zhou, P., Bulach, D., Wang, L.-F. (2011). Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Developmental & Comparative Immunology, 35(1), 7-18. https://doi.org/10.1016/j.dci.2010.07.006

Cowled, C., Baker, M. L., Zhou, P., Tachedjian, M., Wang, L.-F. (2012). Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Developmental & Comparative Immunology, 36(4), 657-664. https://doi.org/10.1016/j.dci.2011.11.008

Deets, K. A., Vance, R. E. (2021). Inflammasomes and adaptive immune responses. Nature Immunology, 22(4), 412-422.

Déjosez, M., Marin, A., Hughes, G. M., Morales, A. E., Godoy-Parejo, C., Gray, J. L., Qin, Y., Singh, A. A., Xu, H., Juste, J., Ibáñez, C., White, K. M., Rosales, R., Francoeur, N. J., Sebra, R. P., Alcock, D., Volkert, T. L., Puechmaille, S. J., Pastusiak, A., . . . Zwaka, T. P. (2023). Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell, 186(5), 957-974.e928. https:/doi.org/10.1016/j.cell.2023.01.011

Eby, P., Peel, A. J., Hoegh, A., Madden, W., Giles, J. R., Hudson, P. J., Plowright, R. K. (2023). Pathogen spillover driven by rapid changes in bat ecology. Nature, 613(7943), 340-344. https:/doi.org/10.1038/s41586-022-05506-2

Geiser, F. & Stawski, C. (2011). Hibernation and Torpor in Tropical and Subtropical Bats in Relation to Energetics, Extinctions, and the Evolution of Endothermy. Integrative and Comparative Biology, 51(3), 337-348. https:/doi.org/10.1093/icb/icr042

Goh, G., Ahn, M., Zhu, F., Lee, L. B., Luo, D., Irving, A. T., Wang, L.-F. (2020). Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proceedings of the National Academy of Sciences, 117(46), 28939-28949. https:/doi.org/10.1073/pnas.2003352117

Grange, Z. L., Goldstein, T., Johnson, C. K., Anthony, S., Gilardi, K., Daszak, P., Olival, K. J., O’Rourke, T., Murray, S., Olson, S. H., Togami, E., Vidal, G., Mazet, J. A. K. (2021). Ranking the risk of animal-to-human spillover for newly discovered viruses. Proceedings of the National Academy of Sciences, 118(15), e2002324118. http://www.pnas.org/content/118/15/e2002324118.abstract

Hayman, D. T. S. (2016). Bats as Viral Reservoirs. Annual Review of Virology, 3(1), 77-99. https:/doi.org/10.1146/annurev-virology-110615-042203 Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S., McClean, D., Kelly, D., Donohue, I., Jackson, A., Cooper, N. (2014). Ecology and mode-of-life explain lifespan variation in birds and mammals. Proceedings. Biological sciences / The Royal Society, 281, 20140298. https:/doi.org/10.1098/rspb.2014.0298

Hiller, M., Morales, A., Ahmed, A., Hilgers, L., Kirilenko, B., Kontopoulos, D., Dong, Y., Li, X., Irving, A., Brown, T., Pippel, M., Winkler, S., Baid, K., Gonzalez, V., Banerjee, A., Huang, Z., Hughes, G., Teeling, E., Myers, E., . . . Lim, B. (2023). Reference-quality bat genomes illuminate adaptations to viral tolerance and disease resistance. In: Research Square. Prepint. https:/doi.org/10.21203/rs.3.rs-557682/v1

Hughes, A. L.,, Hughes, M. K. (1995). Small genomes for better flyers. Nature, 377(6548), 391-391. https:/doi.org/10.1038/377391a0

Iha, K., Omatsu, T., Watanabe, S., Ueda, N., Taniguchi, S., Fujii, H., . . . Yoshikawa, Y. (2010). Molecular Cloning and Expression Analysis of Bat Toll-Like Receptors 3, 7 and 9. Journal of Veterinary Medical Science, 72(2), 217-220. https:/doi.org/10.1292/jvms.09-0050

Irving, A. T., Ahn, M., Goh, G., Anderson, D. E., & Wang, L. F. (2021). Lessons from the host defences of bats, a unique viral reservoir. Nature, 589(7842), 363-370. https://doi.org/10.1038/s41586-020-03128-0

Joanna, K., Graham, M. H., Eva, M. P.-M., Susan, R. Q., S+©bastien, J. P., Luke, A. J. O., Emma, C. T. (2017). A Potent Anti-Inflammatory Response in Bat Macrophages May Be Linked to Extended Longevity and Viral Tolerance. Acta Chiropterologica, 19(2), 219-228. Retrieved from https://doi.org/10.3161/15081109ACC2017.19.2.001

Munshi-South, J., Wilkinson, G. S. (2010). Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Research Reviews, 9(1), 12-19. https://doi.org/10.1016/j.arr.2009.07.006

Ng, J. H. J., Tachedjian, M., Deakin, J., Wynne, J. W., Cui, J., Haring, V., Broz, I., Chen, H., Belov, K., Wang, L.-F., Baker, M. L. (2016). Evolution and comparative analysis of the bat MHC-I region. Scientific Reports, 6(1), 21256. https://doi.org/10.1038/srep21256

O’Mara, M. T., Wikelski, M., Voigt, C. C., Ter Maat, A., Pollock, H. S., Burness, G., Desantis, L. M., Dechmann, D. K. N. (2017). Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. eLife, 6, e26686. https://doi.org/10.7554/eLife.26686

O’Shea, T., Cryan, P., Cunningham, A., Fooks, A., Hayman, D. T. S., Luis, A., Peel, A., Plowright, R., Wood, J. L. N. (2014). Bat Flight and Zoonotic Viruses. Emerging Infectious Disease journal, 20(5), 741. https://doi.org/10.3201/eid2005.130539

Páez, A., Núñez, C., García, C., Boshell, J. (2003). Molecular epidemiology of rabies epizootics in Colombia: evidence for human and dog rabies associated with bats. Journal of General Virology, 84(4), 795-802. https://doi.org/10.1099/vir.0.18899-0

Páez, A., Velasco-Villa, A., Rey, G., Rupprecht, C. E. (2007). Molecular epidemiology of rabies in Colombia 1994-2005 based on partial nucleoprotein gene sequences. Virus Research, 130(1), 172-181. https://doi.org/10.1016/j.virusres.2007.06.008

Park, M., Thwaites, R. S., Openshaw, P. J. M. (2020). COVID-19: Lessons from SARS and MERS. Eur.J Immunol, 50(3), 308-311. PM:32104909

Pavlovich, S. S., Lovett, S. P., Koroleva, G., Guito, J. C., Arnold, C. E., Nagle, E. R., Kulcsar, K., Lee, A., Thibaud-Nissen, F., Hume, A. J., Mühlberger, E., Uebelhoer, L. S., Towner, J. S., Rabadan, R., Sanchez-Lockhart, M., Kepler, T. B., Palacios, G. (2018). The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell, 173(5), 1098-1110. https://doi.org/10.1016/j.cell.2018.03.070

Peel, A. J., Wells, K., Giles, J., Boyd, V., Burroughs, A., Edson, D., Crameri, G., Baker, M. L., Field, H., Wang, L. F., McCallum, H., Plowright, R. K., Clark, N. (2019). Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerging Microbes & Infections, 8(1), 1314-1323. https://doi.org/10.1080/22221751.2019.1661217

Periasamy, P., Hutchinson, P. E., Chen, J., Guerin-Bonne, I., Shahul Hameed, S. S., Selvam, P., Hameed, S., Selvam, P., Hey, Y., Fink, K., Irving, A., Dutertre, Ch.-A., Baker, M., Crameri, G., Wang, L.-F., Alonso, S. (2019). Studies on B Cells in the Fruit-Eating Black Flying Fox (Pteropus alecto). Frontiers in Immunology, 10, 2019. https://doi.org/10.3389/fimmu.2019.00489

Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P., Foley, J. E. (2008). Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proceedings of the Royal Society B: Biological Sciences, 275(1636), 861-869. https://doi.org/10.1098/rspb.2007.1260

Plowright, R. K., Peel, A. J., Streicker, D. G., Gilbert, A. T., McCallum, H., Wood, J., Baker, M. L., Restif, O. (2016). Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoirae Host Populations. PLOS Neglected Tropical Diseases, 10(8), e0004796. https://doi.org/10.1371/journal.pntd.0004796

Podlutsky, A. J., Khritankov, A. M., Ovodov, N. D., Austad, S. N. (2005). A new field record for bat longevity. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(11), 1366-1368.

Qu, Z., Li, Z., Ma, L., Wei, X., Zhang, L., Liang, R., Meng, G., Zhang, N., Xia, C. (2019). Structure and Peptidome of the Bat MHC Class I Molecule Reveal a Novel Mechanism Leading to High-Affinity Peptide Binding. The Journal of Immunology, 202, ji1900001. https://doi.org/10.4049/jimmunol.1900001

Randolph, H. E., Barreiro, L. B. (2018). Holy Immune Tolerance, Batman! Immunity, 48(6), 1074-1076. https://doi.org/10.1016/j.immuni.2018.05.016

Raoult, D., Zumla, A., Locatelli, F., Ippolito, G., Kroemer, G. (2020). Coronavirus infections: Epidemiological, clinical and immunological features and hypothesis. Cell Stress, 34345. https://doi.org/10.15698/cst2020.04.216

Rossi, M., Young, J. W. (2005). Human Dendritic Cells: Potent Antigen-Presenting Cells at the Crossroads of Innate and Adaptive Immunity. The Journal of Immunology, 175(3), 1373-1381.

Schattgen, S. A., Fitzgerald, K. A. (2011). The PYHIN protein family as mediators of host defenses. Immunological Reviews, 243(1), 109-118. https://doi.org/10.1111/j.1600-065X.2011.01053.x

Schountz, T. (2014). Immunology of Bats and Their Viruses: Challenges and Opportunities. Viruses, 6(12), 4880-4901. https://www.mdpi.com/1999-4915/6/12/4880

Schountz, T., Baker, M. L., Butler, J., Munster, V. (2017). Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.01098

Shen, Y.-Y., Liang, L., Zhu, Z.-H., Zhou, W.-P., Irwin, D. M., Zhang, Y.-P. (2010). Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proceedings of the National Academy of Sciences, 107 (19), 8666-8671. https://doi.org/10.1073/pnas.0912613107

Stetson, D. B., Medzhitov, R. (2006). Type I Interferons in Host Defense. Immunity, 25(3), 373-381.

Takeuchi, O., Akira, S. (2009). Innate immunity to virus infection. Immunol Rev., 227(1), 75-86. PM:19120477

Teeling, E. C., Vernes, S. C., Dávalos, L. M., Ray, D. A., Gilbert, M. T. P., Myers, E., Consortium, B. K. (2018). Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annual Review of Animal Biosciences, 6(1), 23-46. https://doi.org/10.1146/annurev-animal-022516-022811

Theofilopoulos, A. N., Baccala, R., Beutler, B., Kono, D. H. (2005). Type I Interferons (/) In Immunity And Autoimmunity. Annual Review of Immunology, 23(1), 307-335.

Tian, S., Zeng, J., Jiao, H., Zhang, D., Zhang, L., Lei, C.-q., Rossiter, S. J., Zhao, H. (2023). Comparative analyses of bat genomes identify distinct evolution of immunity in Old World fruit bats. Science Advances, 9(18), eadd0141. https://doi.org/10.1126/sciadv.add0141

Wang, J., Pan, Y. F., Yang, L. F., Yang, W. H., Lv, K., Luo, C. M., Wang, J., Kuang, G. P., Wu, W. C., Gou, Q. Y., Xin, G. Y., Li, B., Luo, H. L., Chen, S., Shu, Y. L., Guo, D., Gao, Z. H., Liang, G., Li, J., . . . Shi, M. (2023). Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat Commun, 14(1), 4079. https://doi.org/10.1038/s41467-023-39835-1

Wang, L.-F., Walker, P. J., Poon, L. L. M. (2011). Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Current Opinion in Virology, 1(6), 649-657. https://doi.org/10.1016/j.coviro.2011.10.013

Wang, L. F., Gamage, A. M., Chan, W. O. Y., Hiller, M., Teeling, E. C. (2021). Decoding bat immunity: the need for a coordinated research approach. Nature Reviews Immunology, 21(5), 269-271. https://doi.org/10.1038/s41577-021-00523-0

Wang, Z., Zhu, T., Xue, H., Fang, N., Zhang, J., Zhang, L., Pang, J., Teeling, E., Zhang, S. (2017). Prenatal development supports a single origin of laryngeal echolocation in bats. Nature ecology & evolution, 1(2), 0021. DOI:10.1038/s41559-016-0021

Warmuth, V. M., Metzler, D., Zamora-Gutiérrez, V. (2023). Human disturbance increases coronavirus prevalence in bats. Science Advances, 9(13), eadd0688. https://doi.org/10.1126/sciadv.add0688

Wilkinson, G. S., South, J. M. (2002). Life history, ecology and longevity in bats. Aging Cell, 1 (2), 124-131. https://doi.org/10.1046j.1474-9728.2002.00020.x

Wilmanski, J. M., Petnicki-Ocwieja, T., Kobayashi, K. S. (2008). NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. Journal of Leukocyte Biology, 83(1), 13-30.

Worobey, M., Levy, J. I., Malpica Serrano, L., Crits-Christoph, A., Pekar, J. E., Goldstein, S. A., Rasmussen, A. L., Kraemer, M. U. G., Newman, C., Koopmans, M. P. G., Suchard, M. A., Wertheim, J. O., Lemey, P., Robertson, D. L., Garry, R. F., Holmes, E. C., Rambaut, A., Andersen, K. G. (2022). The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science, 377(6609), 951-959. https://doi.org/10.1126/science.abp8715

Wright, S. D. (1999). Toll, A new piece in the puzzle of innate immunity. Journal of Experimental Medicine, 189(4), 605-609.

Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J-J., Xu, L., Holmes, E. C., Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3

Wynne, J. W., Woon, A. P., Dudek, N. L., Croft, N. P., Ng, J. H. J., Baker, M. L., Wang, L.-F., Purcell, A. W. (2016). Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule. The Journal of Immunology, 196(11), 4468-4476. https://doi.org/10.4049/jimmunol.1502062

Xie, J., Li, Y., Shen, X., Goh, G., Zhu, Y., Cui, J., Wang, L. F., Shi, Z. L., Zhou, P. (2018). Dampened STING-Dependent Interferon Activation in Bats. Cell Host & Microbe, 23 (3), 297-301. https://doi.org/10.1016/j.chom.2018.01.006

Yokoyama, W. M., Colonna, M. (2008). Innate immunity to pathogens. Current Opinion in Immunology, 20(1), 1-2.

Yong, K. S. M., Ng, J. H. J., Her, Z., Hey, Y. Y., Tan, S. Y., Tan, W. W. S., Irac, S. E., Liu, M., Chan, X. Y., Gunawan, M., Foo, R. J. H., Low, D. H. W., Mendenhall, I. H., Chionh, Y. T., Dutertre, C.-A., Chen, Q., Wang, L.-F. (2018). Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system. Scientific Reports, 8(1), 4726. https://doi.org/10.1038/s41598-018-22899-1

Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., Wynne, J. W., Xiong, Z., Baker, M. L., Zhao, W., Tachedjian, M., Zhu, Y., Zhou, P., Jiang, X., Ng, J., Yang, L., Wu, L., Xiao, J., Feng, Y., . . . Wang, J. (2013). Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science, 339 (6118), 456. http://science.sciencemag.org/content/339/6118/456.abstract

Zhou, H., Ji, J., Chen, X., Bi, Y., Li, J., Wang, Q., Hu, T., Song, H., Zhao, R., Chen, Y., Cui, M., Zhang, Y., Hughes, A. C., Holmes, E. C., Shi, W. (2021). Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 184(17), 4380-4391. https://doi.org/10.1016/j.cell.2021.06.008

Zhou, P., Chionh, Y. T., Irac, S. E., Ahn, M., Jia Ng, J. H., Fossum, E., Bogen, B., Ginhoux, F., Irving, A. T., Dutertre, Ch.-A., Wang, L.-F. (2016). Unlocking bat immunology: Establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages. Scientific Reports, 6, 38597. https://doi.org/10.1038/srep38597

Zhou, P., Tachedjian, M., Wynne, J. W., Boyd, V., Cui, J., Smith, I., Cowled C., J. Ng, J. H., Mok, L., Michalski, W. P., Mendenhall, I. H., Tachedjian, G., Lin-Fa Wang, L.-F., Baker, M. L. (2016). Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proceedings of the National Academy of Sciences, 113(10), 2696-2701. https://doi.org/10.1073/pnas.1518240113

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., . . . Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. PM: 32015507

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales