Modelación, predicción y biodisponibilidad de especies geoquímicas de arsénico en aguas subterráneas del macizo de Oban, sureste de Nigeria
PDF (English)

Cómo citar

S. Ekwere, A. (2024). Modelación, predicción y biodisponibilidad de especies geoquímicas de arsénico en aguas subterráneas del macizo de Oban, sureste de Nigeria. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 48(186), 131–144. https://doi.org/10.18257/raccefyn.1948

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Para determinar los patrones de distribución, las fuentes, la especiación química y la biodisponibilidad de arsénico en acuíferos subterráneos, se analizaron 64 muestras de agua subterránea mediante modelos hidroquímicos y geoquímicos. Se determinó que la geoquímica iónica de importancia, las facies hidrogeoquímicas y los parámetros hidrogeoquímicos básicos son interdependientes. Las concentraciones de arsénico (As) variaron de 0,001 mg/l a 0,03 mg/l, con una media de 0,007 mg/l. Los resultados del 4,68 % de las muestras sobrepasaron el nivel permitido de 0,01 mg/l, lo que significa que el agua subterránea no tiene un contenido peligrosamente alto de arsénico. Las concentraciones significativas de iones en las estaciones secas disminuyeron en las lluviosas, lo que sugiere que las concentraciones iónicas, generadas por la erosión de silicatos en los acuíferos, se diluyeron. La tendencia de la abundancia en la concentración de metales fue Fe > Mn > Zn > Ni > Cu > As > Pb > Cd durante la estación seca y Fe > Zn > Mn > Ni > Pb > Cu > As > Cd durante la lluviosa. De las dos facies hidroquímicas descubiertas, la predominante fue la facies principal de bicarbonato alcalinotérreo [Ca-(Mg)-HCO3], típica de terrenos de basamento, lo que sugiere la etapa fundamental de la evolución del agua subterránea. Los gráficos de proporciones iónicas, cargas metálicas y análisis de componentes principales evidenciaron que las concentraciones iónicas están controladas por la geología. Los modelos geoquímicos revelaron la presencia de especies acuosas de arsénico, es decir, los arseniatos menos peligrosos en niveles no saturados, por lo que actualmente no representan una preocupación.

https://doi.org/10.18257/raccefyn.1948

Palabras clave

Arsénico | Agua subterránea | Especiación | Basamento | Nigeria
PDF (English)

Citas

Ademorati, C.M.A. (1996). Environmental chemistry and toxicology. Ibadan, Nigeria: Foludex press.

Ali, H. & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term’ heavy metals’-proposal of a comprehensive definition. Toxicol Environ Chem, 100(1), 6-19 21.

Ali, H., Khan, E., Ilahi, I. (2019) Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, Vol?, 6730305. https://doi.org/10.1155/2019/6730305

APHA (1995). Standard methods for the examination of water and waste water. 19th Edition. Editing house?.

Bhairo P. A., Pallavi, D., Vaibhav, S., Manish, K. (2023). Perspectives of Heavy Metal Pollution Indices for soil, sediment, and water pollution evaluation: An insight. Total Environment Research Themes, 6, 100039. https://doi.org/10.1016/j.totert.2023.100039

Bose, U., Rahman, M., Alamgir, M. (2011). Arsenic toxicity and speciation in ground water sample: A review of some techniques. International Journal of Chemical Technology, 3(1),14-25.

Chandrasekar, T., Keesari, T., Gopalakrishnan, G., Shankar-Karuppannan, S., Senapathi, V., Sabarathinam, C., Prasanna-Mohan-Viswanathan, P.M. (2020). Occurrence of heavy metals in groundwater along the lithological interface of K/T Boundary, Peninsular India: A special focus on source, geochemical mobility and health risk. Archives of Environmental Contamination and Toxicology, 80, 183-207. https://doi.org/10.1007/s00244-020-00803-1

Deer, W.A., Howie, R.A., Zussman, J. (1992). An introduction to the rock forming minerals. New York: John Wiley & Sons.

Duffus, J. H. (2002). Heavy metals, a meaningless term? (IUPAC Technical Report), Pure and Applied Chemistry, 74(5), 793-807.

Edet, A. E., Okereke, C. S. Teme, S. C. Esu E. O. (1998). Application of remote-sensing data to groundwater exploration: A case study of the Cross River State, SE Nigeria. Hydrogeology Journal, 6, 394-404.

Edet, A.E., Merkel, B.J., Offiong, O.E. (2004). Contamination risk assessment of fresh groundwater using the distribution and chemical speciation of some potentially toxic elements in Calabar (southern Nigeria). Environmental Geology, 45, 1025-1035.

Ekwere, A.S. (2010). Hydrogeological and Hydrogeochemical Framework of the Oban Massif, south-eastern Nigeria. Ph.D Thesis, Dept. of Geology, University of Calabar, Calabar, Nigeria.

Ekwere A.S., Edet, A., Ukpong, A.J. (2011). Hydrochemistry of the near shore marine bay, Calabar River (South-eastern, Nigeria). Materials and Geoenvironment, 58(4), 421-436.

Ekwere, A.S. (2012). Hydrogeochemical framework of the Oban Massif, south-eastern Nigeria: A baseline for hydrogeochemical assessment and monitoring. Lambert Academic Publishing (LAP) GmbH, Germany.

Ekwere, A.S. & Edet, A.E. (2012). Hydrogeochemical Signatures of Different Aquifer Layers in the Crystalline Basement of Oban Area (SE Nigeria). Journal of Geography and Geology, 1 (1), 90-102.

Ekwere, A. S., Edet, A. E., Ekwere, S. J. (2012). Groundwater chemistry of the Oban Massif, South-Eastern Nigeria. Revista Ambiente & Água, 7(1), 51-66.

Ekwere, A. S. & Edet, A., (2012). Trace metals in ground and surface waters of the Oban Massif area, SE Nigeria. Advances in Applied Sciences Research, 3(1), 312-318.

Ekwere, A. S. & Edet, B. B. (2021). Temporal variations of heavy metals in sediments, soils and dust particulates across the rock quarrying districts of the Oban Massif, southeastern Nigeria. Environment Nanotechnology, Monitoring & Management 15, 100431.

Ekwere, A. S. (2023a). Geology, Geomorphology and Evolution of the Landscapes of Cross Region, South-Eastern Nigeria: In A. Faniran et al. (Eds.), Landscapes and Landforms of Nigeria, World Geomorphological Landscapes (pp. 217-223). Springer-Nature Switzerland AG.

Ekwere, A. S. (2023b). Heavy Metal Distribution Trend and Speciation in Groundwaters within the Lower Cross River Hydrological Basin, SE-Nigeria. Sustainable Water Resources Management, 9,73. https://doi.org/10.1007/s40899-023-00859-6

Feng, S., Guo, H., Sun, X., Han, S. (2022). Limited roles of anthropogenic activities on arsenic mobilization in groundwater from the Yinchuan Basin, China. Journal of Hydrology, 610, 127910. https://doi.org/10.1016/j.jhydrol.2022.127910

Flora, S.J., Flora G.J.S, Saxena, G. (2006). Environmental occurrence, health effects and management of lead poisoning. In: Cascas, S.B, Sordo, J., (Eds) Lead: Chemistry, Analytical Aspects, Environmental Impacts and Health Effects (pp 158-228). Elsevier Publication, Netherlands.

Garcia, M. G., Scracek, O., Fernandéz, D. S., Hidalgo, M. (2007). Factors affecting arsenic concentration in groundwaters from Northwestern Chaco-Pampean Plain, Argentina. Environmental Geology, 52, 1261-1275. https://doi.org/10.1007/s00254-006-0564-y

Harvey L.J. & McArdle H.J. (2008). Biomarkers of copper status: a brief update. British Journal of Nutrition, 99(S3): S10-S13.

Hassan, A. (2008). Arsenic in alluvial aquifers in the Meghna Basin, southeastern Bangladesh: Hydrogeological and Geochemical Characterization. TRITA-LWR PhD thesis. 1047 ISSN 1650-8602.

Heidari, A., Kumar, V., Keshavarzi, A., (2019). Appraisal of metallic pollution and ecological risks in agricultural soils of Alborz province, employing contamination indices and multivariate statistical analysis. International Journal of Environmental Health Research, 31, 607-625. https://doi.org/10.1080/09603123.2019.1677864

Idowu, G. (2022). Heavy Metals Research in Nigeria: A Review of Studies and Prioritization of Research needs. Preprint (Version 1) available at Research Square: https://doi.org/10.21203/rs.3.rs-1495299/v1

Katila, P., Colfer, C.J.P., De, J.W., Galloway, G., Pacheco, P., Winkel, G. (2019). Sustainable Development Goals. Cambridge University Press: London, UK.

Keskin, T. E. & Özler, E. (2020). Heavy metal contamination in groundwater and surface water due to active Pb-Zn-Cu mine tails and water-rock interactions: A case study from the Küre mine area (Turkey). Turkish Journal of Earth Sciences, 29, 878-895. https://doi.org/10.3906/yer-2001-3

Khan, M.U. & Rai, N. (2022). Arsenic and selected heavy metal enrichment and its health risk assessment in groundwater of the Haridwar district, Uttarakhand, India. Environmental Earth Sciences, 81, 37.

Kumar, V., Pandita, S., Sharma, A., Bakshi, P., Sharma, P., Karaouzas, I., Bhardwaj, R., Thukral, A.K., Cerda, A., (2019). Ecological and human health appraisal of metal(iods) in agricultural soils: a review. Geology, Ecology and Landscapes, 5, 173-185. https://doi.org/10.1080/24749508.2019.1701310

Langmuir, D. (1997). Aqueous Environmental Geochemistry. Prentice Hall, Inc.

Li, Y., Bi, Y., Mi, W., Xie, S., Ji, L. (2021). Land use change caused by anthropogenic activity increase, fluoride and arsenic pollution in groundwater and human health risk. Journal of Hazardous Materials, 406, 124337.

Lofts, S. & Tipping, E. W., (1999). Modeling the Speciation of Contaminants in Soils and Groundwaters. Land Contamination and Reclamation, 7 (4), 291-292.

Manu, E., De Lucia, M., Kühn, M. (2023). Hydrochemical Characterization of Surface Water and Groundwater in the Crystalline Basement Aquifer System in the Pra Basin (Ghana). Water, 15, 1325.

Matthess, G., (1982). The properties of groundwater. Wiley, New York.

Okereke, C. S., Esu, E. O., Edet, A. E. (1998). Determination of potential groundwater sites using geological and geophysical techniques in Cross River State, southeastern Nigeria. Journal of African Earth Sciences, 27 (1), 149 – 163.

Orisakwe, O.E, Oladipo, O.O, Ajaezi G.C, Udowelle, N.A. (2017) Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria. Journal of Environmental and Public Health, 2017, 3506949. https://doi.org/10.1155/2017/3506949

Paulson, A. J. (1999). Modelling removal of Cd, Cu, Pb and Zn in acidic groundwater during neutralisation by ambient surface water and groundwaters. Environmental Sciences Technology, 33, 3850-3856.

Petters, S. W., Adighije, C. I., Essang, E. B., Ekpo, I. E. (1989). A Regional Hydrogeological Study of rural water supply options for planning and implementation of phase II rural water programme in Cross River State, Nigeria. Research Square: https://doi.org/10.21203/rs.3.rs-1979540/v1

Qin, B., Paerl, H. W., Brookes, J. D., Liu, J., Jeppesen, E., Zhu, G. (2019). Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Science Bulletin, 64, 354-356.

Rahman, A. A. M. S., Ukpong, E. E., Azmatullah, M. (1981). Geology of parts of the Oban massif, southeastern Nigeria. Journal of Mining and Geology; 18 (1), 60 – 65.

Rehman, F., Azeem, T., Hashmi, R. A., Siddique, J., Shahab, A., Mustafa, S. (2023). Drinking and irrigation quality of groundwater and health risk assessment due to arsenic exposure in Sheikhupura district, Punjab, Pakistan. Kuwait Journal of Science, 50, 368-375. https://doi.org/10.1016/j.kjs.2022.12.001

Rosner, U. (1998). Effects of historical mining activities on surface water and groundwater – an example from northwest Arizona. Environmental Geology, 33, 224-230.

Shahid, U. S., Iqbal, J., Abbasi, N. A., Tahir, A. (2023). GIS based hotspot analysis and health risk assessment of groundwater arsenic from an unconfined deep aquifer of Lahore, Pakistan. Environmental Geochemistry and Health, 45, 6053-6068. https://doi.org/10.1007/s10653-023-01612-w

Shankar, S., Shanker, U., Shikha. (2014). Arsenic contamination of groundwater: A review of sources, Prevalence, Health Risks, and Strategies for Mitigation. The Scientific World Journal, 2014, 304524. https://doi.org/10.1155/2014/304524

Soldatova, E., Sidkina, E., Dong, Y., Ivanov, V., Li., J., Sun., Z. (2022). Arsenic in groundwater of the Poyang Lake area (China): aqueous species and health risk assessment. Environmental Geochemistry and Health, 45, 2917-2933. https://doi.org/10.1007/s10653-022-01391-w

Stern, B.R. (2010). Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Toxicology and Environmental Health Sciences, 73 (2), 114–127.

Stollenwerk, K.G. (2003). Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption. In: Welch, A.H., Stollenwerk, K.G. (Eds.) Arsenic in Ground Water (pp 67–100). Springer, Boston, MA. https://doi.org/10.1007/0-306-47956-7_3

Tchounwou, P.B, Yedjou, C.G, Patlolla, A.K, Sutton, D.J. (2012). Heavy metals toxicity and the environment. In: Luch A (Ed). Molecular, Clinical and Environmental Toxicology: Experientia Supplementum 101, (pp 133-164). Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6

Tijani, M.N. (1994). Hydrochemical assessment of groundwater in Moro area, Kwara State, Nigeria. Environmental Geology, 24, 194-202.

Vivona, R., Preziosi, E., Madé, B., Giuliano, G. (2007). Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeology Journal, 15, 1183-1196.

Wani, A.L, Ara, A., Usmani, J.A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8 (2), 55-64.

World Health Organization (WHO). (2010). Guideline for drinking water quality (4th Ed). New York, Geneva, Switzerland.

Zhang, Y., Chen, J., Shi, W.L., Zhang, D.D., Zhu, T., Li, X. (2017). Establishing a human health risk assessment methodology for metal species and its application of Cr6+ in groundwater environment. Chemosphere, 189, 525-537.

Zhu, Y., Yang, Q., Wang, Yang, J., Zhang, X., Li., Z., Martin, J.D. (2023). A hydrochemical and isotopic approach for source identification and health risk assessment of groundwater arsenic pollution in the central Yinchua basin. Environmental Research, 231, 116153. https://doi.org/10.1016/j.envres.2023.116153

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales