Ajuste de los modelos de velocidad de transferencia de gases en el embalse tropical andino Porce III
PDF

Cómo citar

Bohórquez-Bedoya, E., Guevara-Cáceres, J. A., Gómez-Giraldo, A., & León-Hernández, J. G. (2023). Ajuste de los modelos de velocidad de transferencia de gases en el embalse tropical andino Porce III. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(185), 837–848. https://doi.org/10.18257/raccefyn.1970

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En los embalses se producen gases de efecto invernadero por la descomposición microbiana de la materia orgánica en los sedimentos o de otros procesos bioquímicos en la columna de agua y la superficie. Estos gases se emiten a la atmósfera por distintas vías. Concretamente los flujos difusivos dependen de la diferencia de concentración entre el agua y la atmósfera y la velocidad de transferencia de los gases (k) controlada por forzantes hidrodinámicos que alteran la turbulencia en la superficie del agua. El forzante más reconocido de control de la k es la velocidad del viento (U). Numerosos modelos empíricos relacionan estas variables, la mayoría basados en embalses situados en altitudes altas y medias, aunque algunos suelen replicarse en distintos ambientes y latitudes, incluso en sistemas tropicales. Aquí medimos directamente los flujos difusivos de metano en el embalse tropical andino Porce III utilizando cámaras flotantes y las concentraciones del gas por cromatografía de gases. La k se estimó a partir de la ley de difusión o primera ley de Fick y la U en una estación meteorológica ubicada sobre la superficie del embalse para verificar la aplicabilidad de los modelos de velocidad de transferencia de gases propuestos en función de la velocidad del viento en un embalse tropical andino. Los resultados revelaron que dichos modelos, propuestos para lagos y embalses, subestimaron la k en el embalse Porce III.

https://doi.org/10.18257/raccefyn.1970

Palabras clave

Velocidad de transferencia de gases | Emisiones | Metano | Embalses tropicales | Velocidad del viento
PDF

Citas

Abe, D.S., Adams, D.D., Sidagis Galli, C.V., Sikar, E., Tundisi, J.G., Galli, C.V.S., Sikar, E., Tundisi, J.G. (2005). Sediment greenhouse gases (methane and carbon dioxide) in the Lobo Broa Reservoir, São Paulo State, Brazil: Concentrations and diffuse emission fluxes for carbon budget considerations. Lakes and Reservoirs: Research and Management, 10(4), 201-209. https://doi.org/10.1111/j.1440-1770.2005.00277.x

Alin, S. R., Rasera, M. de F.F.L., Salimon, C.I., Richey, J.E., Holtgrieve, G.W., Krusche, A.V., Snidvongs, A. (2011). Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. Journal of Geophysical Research, 116(G1), G01009. https://doi.org/10.1029/2010JG001398

Amorocho, J. & DeVries, J.J. (1980). A new evaluation of the wind stress coefficient over water surfaces. Journal of Geophysical Research, 85(C1), 433-442. https://doi.org/10.1029/JC085iC01p00433

Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del Giorgio, P., Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593-596. https://doi.org/10.1038/ngeo1211

Bastviken, D., Cole, J.J., Pace, M.L., Van de-Bogert, M.C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences, 113(2), 1-13. https://doi.org/10.1029/2007JG000608

Bastviken, D., Cole, J., Pace, M., Tranvik, L. (2004). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1-12. https://doi.org/10.1029/2004GB002238

Beaulieu, J. J., Shuster, W. D., Rebholz, J. A. (2012). Controls on gas transfer velocities in a large river. Journal of Geophysical Research: Biogeosciences, 117(G2), n/a-n/a. https://doi.org/10.1029/2011JG001794

Bohórquez-Bedoya, E. (2023). Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs [Ph.D. thesis]. Universidad Nacional de Colombia and University of Kaiserslautern-Landau. DOI: 10.26204/KLUEDO/7341

Borges, A.V., Delille, B., Schiettecatte, L.S., Gazeau, F., Abril, G., & Frankignoulle, M. (2004 a). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography, 49(5), 1630-1641. https://doi.org/10.4319/lo.2004.49.5.1630

Borges, A.V., Vanderborght, J.P., Schiettecatte, L. S., Gazeau, F., Ferrón-Smith, S., Delille, B., Frankignoulle, M. (2004 b). Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27(4), 593-603. https://doi.org/10.1007/BF02907647

Cole, J. & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography, 43(4), 647-656.

Crusius, J. & Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48(3), 1010-1017.

Deacon, E. L. (1977). Gas transfer to and across an air-water interface. Tellus A: Dynamic Meteorology and Oceanography, 29(4), 363. https://doi.org/10.3402/tellusa.v29i4.11368

Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., Delsontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Santos, M. A. D. O. S., Vonk, J. A., Dos Santos, M. A., Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience, 66(11), 949-964. https://doi.org/10.1093/biosci/biw117

Donis, D., Flury, S., Spangenberg, J. E. (2017). Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nature Communications, 8(1661), 1-11. https://doi.org/10.1038/s41467-017-01648-4

Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., Varfalvy, L. (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1-4), 161-172. https://doi.org/10.1016/j.jmarsys.2006.03.019

Guérin, F. & León, J. G. (2015). Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia). Geophysical Research Abstracts.

Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D. F., Grossart, H. P., Tang, K. W. (2019). Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-13320-0

Klaus, M. & Vachon, D. (2020). Challenges of predicting gas transfer velocity from wind measurements over global lakes. Aquatic Sciences, 82(3), 1-17. https://doi.org/10.1007/s00027-020-00729-9

León, J.G. (2020). Cuantificación de emisiones de GEI en un embalse de montaña recientemente inundado: Caso de El Quimbo - GEIMBO. Quinto informe de avance.

León, J. G., Rojas, M., Ambiental, Á. (2020). Estimación de Flujos Difusivos de CO2 en Embalses Tropicales Mediante El Uso Conjunto De La Teledetección, La Modelación De Concentraciones Superficiales Del Gas y K600. Revista de Investigación Agraria y Ambiental, 11(2), 179-196. https://doi.org/10.22490/21456453.3587

Liss, P.S. & Merlivat, L. (1986). Air-Sea Gas Exchange Rates: Introduction and Synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling. Springer Netherlands. https://doi.org/10.1007/978-94-009-4738-2_5

MacIntyre, S. (1995). Trace gas exchange in freshwater and coastal marine systems. Methods in Ecology, en: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Wiley, New York, pp 52-97.

MacIntyre, S., Amaral, J.H.F., Melack, J.M. (2021). Enhanced Turbulence in the Upper Mixed Layer Under Light Winds and Heating: Implications for Gas Fluxes. Journal of Geophysical Research: Oceans, 126(12), 1-36. https://doi.org/10.1029/2020JC017026

MacIntyre, S., Eugster, W., Kling, G.W. (2001). The critical importance of buoyancy flux for gas flux across the air-water interface. In: Gas Transfer at Water Surfaces, edited by M.A. Donelan, W.M. Drennan, E.S. Saltzman, and R. Wanninkhof. AGU.

MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., Miller, S.D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37(24), 2-6. https://doi.org/10.1029/2010GL044164

McGinnis, D. F., Kirillin, G., Tang, K. W., Flury, S., Bodmer, P., Engelhardt, C., Casper, P., Grossart, H. (2015). Enhancing Surface Methane Fluxes from an Oligotrophic Lake: Exploring the Microbubble Hypothesis. Environmental Science and Technology, 49, 873-880. https://doi.org/10.

/es503385d

Ordóñez, C., DelSontro, T., Langenegger, T., Donis, D., Suárez, E. L., McGinnis, D. F. (2023). Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient. Nature Communications, 14(1), 2165. https://doi.org/10.1038/s41467-023-37861-7

Paranaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R.M., Sobek, S. (2018). Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607-615. https://doi.org/10.1021/acs.est.7b05138

Peeters, F., Encinas-Fernández, J., Hofmann, H. (2019). Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-018-36530-w

Pernica, P., Wells, M. G., MacIntyre, S. (2014). Persistent weak thermal stratification inhibits mixing in the epilimnion of north-temperate Lake Opeongo, Canada. Aquatic Sciences, 76 (2), 187-201. https://doi.org/10.1007/s00027-013-0328-1

Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43(12), 6276-6284. https://doi.org/10.1002/2016GL068782

Prairie, Y. T. & Giorgio, P. A. (2013). A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inland Waters, 3(January), 311-320. https://doi.org/10.5268/IW-3.3.542

Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., Macintyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., Wu, C. H. (2012). Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 39, 1-5. https://doi.org/10.1029/2012GL051886

Rodríguez, D.C. & Peñuela, G.A. (2022). Estimation of greenhouse gas emissions of a tropical reservoir in Colombia. Journal of Water and Climate Change, 13(2), 872-888. https://doi.org/10.2166/wcc.2022.330

Rudd, J.W.M. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio, 22(4), 246-248.

Schober, P. & Schwarte, L.A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864

St. Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, 50(9), 766. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2

Vachon, D., Langenegger, T., Donis, D., McGinnis, D. F. (2019). Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnology and Oceanography, 64(5), 2114-2128. https://doi.org/10.1002/lno.11172

Vachon, D., Prairie, Y.T., Cole, J.J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 55(4), 1723-1732. https://doi.org/10.4319/lo.2010.55.4.1723

Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12, 351-362. https://doi.org/10.4319/lom.2014.12.351

Wanninkhof, R., Ledwell, J.R., Broecker, W.S. (1985). Gas Exchange-Wind Speed Relation Measured with Sulfur Hexafluoride on a Lake. Science, 227(4691), 1224-1226.

https://doi.org/10.1126/science.227.4691.1224

Wanninkhof, R., Ledwell, J. R., Broecker, W. S., Hamilton, M. (1987). Gas exchange on Mono Lake and Crowley Lake, California. Journal of Geophysical Research, 92(C13), 14567. https://doi.org/10.1029/JC092iC13p14567

Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., Sun, B. (2014). Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 34(4), 204-212. https://doi.org/10.1016/j.chnaes.2013.05.011

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales