Abstract
Greenhouse gases are produced inside reservoirs due to the microbial decomposition of organic matter in the sediments and other biochemical processes in the water column and the surface. These gases are emitted to the atmosphere through different flow pathways. Diffusive fluxes depend on the difference in their concentration in the water and the atmosphere and the gas transfer rate (k), controlled, in turn, by hydrodynamic forces that alter turbulence on the water surface. The most widely recognized force controlling k is wind speed (U). Numerous empirical models relate both variables (k = f (U)), most based on reservoirs located in high and mid-latitudes. However, some have been widely replicated in different environments and latitudes, even in tropical systems. Here, we measured the methane diffusive fluxes in the tropical Andean reservoir Porce III using floating chambers and gas chromatographic measurements for gas concentrations. k was estimated from the diffusion law, i.e., Fick’s first law, and U from a meteorological station located on the reservoir surface. Our objective was to verify the applicability of the proposed gas transfer rate models as a function of wind speed in a tropical Andean reservoir. The results revealed that most models in the literature for lakes and reservoirs underestimated k in the Porce III reservoir.
References
Abe, D.S., Adams, D.D., Sidagis Galli, C.V., Sikar, E., Tundisi, J.G., Galli, C.V.S., Sikar, E., Tundisi, J.G. (2005). Sediment greenhouse gases (methane and carbon dioxide) in the Lobo Broa Reservoir, São Paulo State, Brazil: Concentrations and diffuse emission fluxes for carbon budget considerations. Lakes and Reservoirs: Research and Management, 10(4), 201-209. https://doi.org/10.1111/j.1440-1770.2005.00277.x
Alin, S. R., Rasera, M. de F.F.L., Salimon, C.I., Richey, J.E., Holtgrieve, G.W., Krusche, A.V., Snidvongs, A. (2011). Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. Journal of Geophysical Research, 116(G1), G01009. https://doi.org/10.1029/2010JG001398
Amorocho, J. & DeVries, J.J. (1980). A new evaluation of the wind stress coefficient over water surfaces. Journal of Geophysical Research, 85(C1), 433-442. https://doi.org/10.1029/JC085iC01p00433
Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del Giorgio, P., Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593-596. https://doi.org/10.1038/ngeo1211
Bastviken, D., Cole, J.J., Pace, M.L., Van de-Bogert, M.C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences, 113(2), 1-13. https://doi.org/10.1029/2007JG000608
Bastviken, D., Cole, J., Pace, M., Tranvik, L. (2004). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1-12. https://doi.org/10.1029/2004GB002238
Beaulieu, J. J., Shuster, W. D., Rebholz, J. A. (2012). Controls on gas transfer velocities in a large river. Journal of Geophysical Research: Biogeosciences, 117(G2), n/a-n/a. https://doi.org/10.1029/2011JG001794
Bohórquez-Bedoya, E. (2023). Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs [Ph.D. thesis]. Universidad Nacional de Colombia and University of Kaiserslautern-Landau. DOI: 10.26204/KLUEDO/7341
Borges, A.V., Delille, B., Schiettecatte, L.S., Gazeau, F., Abril, G., & Frankignoulle, M. (2004 a). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography, 49(5), 1630-1641. https://doi.org/10.4319/lo.2004.49.5.1630
Borges, A.V., Vanderborght, J.P., Schiettecatte, L. S., Gazeau, F., Ferrón-Smith, S., Delille, B., Frankignoulle, M. (2004 b). Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27(4), 593-603. https://doi.org/10.1007/BF02907647
Cole, J. & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography, 43(4), 647-656.
Crusius, J. & Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48(3), 1010-1017.
Deacon, E. L. (1977). Gas transfer to and across an air-water interface. Tellus A: Dynamic Meteorology and Oceanography, 29(4), 363. https://doi.org/10.3402/tellusa.v29i4.11368
Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., Delsontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Santos, M. A. D. O. S., Vonk, J. A., Dos Santos, M. A., Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience, 66(11), 949-964. https://doi.org/10.1093/biosci/biw117
Donis, D., Flury, S., Spangenberg, J. E. (2017). Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nature Communications, 8(1661), 1-11. https://doi.org/10.1038/s41467-017-01648-4
Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., Varfalvy, L. (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1-4), 161-172. https://doi.org/10.1016/j.jmarsys.2006.03.019
Guérin, F. & León, J. G. (2015). Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia). Geophysical Research Abstracts.
Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D. F., Grossart, H. P., Tang, K. W. (2019). Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-13320-0
Klaus, M. & Vachon, D. (2020). Challenges of predicting gas transfer velocity from wind measurements over global lakes. Aquatic Sciences, 82(3), 1-17. https://doi.org/10.1007/s00027-020-00729-9
León, J.G. (2020). Cuantificación de emisiones de GEI en un embalse de montaña recientemente inundado: Caso de El Quimbo - GEIMBO. Quinto informe de avance.
León, J. G., Rojas, M., Ambiental, Á. (2020). Estimación de Flujos Difusivos de CO2 en Embalses Tropicales Mediante El Uso Conjunto De La Teledetección, La Modelación De Concentraciones Superficiales Del Gas y K600. Revista de Investigación Agraria y Ambiental, 11(2), 179-196. https://doi.org/10.22490/21456453.3587
Liss, P.S. & Merlivat, L. (1986). Air-Sea Gas Exchange Rates: Introduction and Synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling. Springer Netherlands. https://doi.org/10.1007/978-94-009-4738-2_5
MacIntyre, S. (1995). Trace gas exchange in freshwater and coastal marine systems. Methods in Ecology, en: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Wiley, New York, pp 52-97.
MacIntyre, S., Amaral, J.H.F., Melack, J.M. (2021). Enhanced Turbulence in the Upper Mixed Layer Under Light Winds and Heating: Implications for Gas Fluxes. Journal of Geophysical Research: Oceans, 126(12), 1-36. https://doi.org/10.1029/2020JC017026
MacIntyre, S., Eugster, W., Kling, G.W. (2001). The critical importance of buoyancy flux for gas flux across the air-water interface. In: Gas Transfer at Water Surfaces, edited by M.A. Donelan, W.M. Drennan, E.S. Saltzman, and R. Wanninkhof. AGU.
MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., Miller, S.D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37(24), 2-6. https://doi.org/10.1029/2010GL044164
McGinnis, D. F., Kirillin, G., Tang, K. W., Flury, S., Bodmer, P., Engelhardt, C., Casper, P., Grossart, H. (2015). Enhancing Surface Methane Fluxes from an Oligotrophic Lake: Exploring the Microbubble Hypothesis. Environmental Science and Technology, 49, 873-880. https://doi.org/10.
/es503385d
Ordóñez, C., DelSontro, T., Langenegger, T., Donis, D., Suárez, E. L., McGinnis, D. F. (2023). Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient. Nature Communications, 14(1), 2165. https://doi.org/10.1038/s41467-023-37861-7
Paranaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R.M., Sobek, S. (2018). Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607-615. https://doi.org/10.1021/acs.est.7b05138
Peeters, F., Encinas-Fernández, J., Hofmann, H. (2019). Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-018-36530-w
Pernica, P., Wells, M. G., MacIntyre, S. (2014). Persistent weak thermal stratification inhibits mixing in the epilimnion of north-temperate Lake Opeongo, Canada. Aquatic Sciences, 76 (2), 187-201. https://doi.org/10.1007/s00027-013-0328-1
Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43(12), 6276-6284. https://doi.org/10.1002/2016GL068782
Prairie, Y. T. & Giorgio, P. A. (2013). A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inland Waters, 3(January), 311-320. https://doi.org/10.5268/IW-3.3.542
Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., Macintyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., Wu, C. H. (2012). Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 39, 1-5. https://doi.org/10.1029/2012GL051886
Rodríguez, D.C. & Peñuela, G.A. (2022). Estimation of greenhouse gas emissions of a tropical reservoir in Colombia. Journal of Water and Climate Change, 13(2), 872-888. https://doi.org/10.2166/wcc.2022.330
Rudd, J.W.M. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio, 22(4), 246-248.
Schober, P. & Schwarte, L.A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
St. Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, 50(9), 766. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
Vachon, D., Langenegger, T., Donis, D., McGinnis, D. F. (2019). Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnology and Oceanography, 64(5), 2114-2128. https://doi.org/10.1002/lno.11172
Vachon, D., Prairie, Y.T., Cole, J.J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 55(4), 1723-1732. https://doi.org/10.4319/lo.2010.55.4.1723
Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12, 351-362. https://doi.org/10.4319/lom.2014.12.351
Wanninkhof, R., Ledwell, J.R., Broecker, W.S. (1985). Gas Exchange-Wind Speed Relation Measured with Sulfur Hexafluoride on a Lake. Science, 227(4691), 1224-1226.
https://doi.org/10.1126/science.227.4691.1224
Wanninkhof, R., Ledwell, J. R., Broecker, W. S., Hamilton, M. (1987). Gas exchange on Mono Lake and Crowley Lake, California. Journal of Geophysical Research, 92(C13), 14567. https://doi.org/10.1029/JC092iC13p14567
Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., Sun, B. (2014). Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 34(4), 204-212. https://doi.org/10.1016/j.chnaes.2013.05.011

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales