Propiedades electrónicas y electroquímicas de una estructura del tipo de Zn(II)
Portada 43 (167) 2019
PDF (English)
HTML (English)

Cómo citar

Villada, J. D., Loaiza, J., & Chaur, M. N. (2019). Propiedades electrónicas y electroquímicas de una estructura del tipo de Zn(II). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(167), 273–283. https://doi.org/10.18257/raccefyn.822

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Una nueva bis(hidrazona), altamente soluble en solventes orgánicos comunes, se sintetizó y caracterizó mediante diversas técnicas espectroscópicas. El compuesto se utilizó como ligando ditópico en la construcción de estructuras supramoleculares de tipo rejilla (rejillas supramoleculares o complejos metálicos de tipo rejilla) utilizando Zn2+ como catión metálico. El complejo supramolecular se confirmó mediante resonancia magnética nuclear RMN-1H y bidimensional. El arreglo de tipo rejilla se determinó mediante las señales de RMN-1H del anillo fenilo del ligando orgánico que cambia su velocidad de rotación y, por ende, su ambiente químico al coordinarse en dicho arreglo. Por último, se realizaron estudios de UV-Vis y voltamperometría cíclica y de onda cuadrada, con el fin de determinar las propiedades optoelectrónicas y electroquímicas de estos compuestos. Tanto la bis(hidrazona) como el complejo de tipo rejilla aquí presentados, exhiben varios potenciales de oxidación-reducción, los cuales se estudiaron en detalle mediante las técnicas mencionadas y cuyo estudio sirve de base para el desarrollo futuro de estructuras supramoleculares que puedan utilizarse como interruptores moleculares electroquímicos. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.822
PDF (English)
HTML (English)

Citas

Adenier, A., Chehimi, M. M., Gallardo, I., Pinson, J., Vilà, N. (2004). Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir. 20 (19): 8243-8253. Doi: 10.1021/la049194c

Alam, M. S., Strömsdörfer, S., Dremov, V., Müller, P., Kortus, J., Ruben, M., Lehn, J.-M. (2005). Addressing the Metal Centers of [2×2] CoII4 Grid-Type Complexes by STM/STS. Angewandte Chemie International Edition. 44 (48):7896-7900. Doi:10.1002/anie.200502743

Barboiu, M., Ruben, M., Blasen, G., Kyritsakas, N., Chacko, E., Dutta, M., … Lehn, J.-M. (2006). Self-Assembly, Structure and Solution Dynamics of Tetranuclear Zn2+Hydrazone [2×2] Grid-Type Complexes. European Journal of Inorganic Chemistry. 2006 (4): 784-792. Doi: 10.1002/ejic.200500963

Biswas, S., Das, S., van Leusen, J., Kögerler, P., Chandrasekhar, V. (2014). Tetranuclear [2×2] Square-Grid Lanthanide(III) Complexes: Syntheses, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry. 2014 (25):4159-4167. Doi: 10.1002/ejic.201402326.

Breuning, E., Ruben, M., Lehn, J., Renz, F., García, Y., Ksenofontov, V., … Rissanen, K. (2000). Spin Crossover in a Supramolecular Fe4II [2×2] Grid Triggered by Temperature, Pressure, and Light. Angewandte Chemie International Edition. 39 (14): 2504-2507.Doi: 10.1002/1521-3773(20000717)39:14<2504::AIDANIE2504>3.0.CO;2-B

Bu, X.-H., Tanaka, K., Shionoya, M., Biradha, K., Morishita, H., Furusho, S. (2000). A spontaneously resolved chiral molecular box: A cyclic tetranuclear ZnII complex with DPTZ (DPTZ = 3,6-di-2-pyridyl-1,2,4,5-tetrazine). Chemical Communications. VOL. (2000) (11): 971-972. Doi:10.1039/a909742b

Busch, D. H. (1967). Transition Metal Complexes of the new Synthetic Macrocyclic Ligands. Helvetica Chimica Acta. 50 (S1): 174-206. Doi: 10.1002/hlca.19670500914

Campos-Fernández, C. S., Clérac, R., Koomen, J. M., Russell, D. H., Dunbar, K. R. (2001). Fine-Tuning the Ring-Size of Metallacyclophanes: A Rational Approach to Molecular Pentagons. Journal of the American Chemical Society. 123(4): 773-774. Doi: 10.1021/ja002960r

Carmona-Vargas, C. C., Váquiro, I. Y., Jaramillo-Gómez, L. M., Lehn, J.-M., Chaur, M. N. (2017). Grid-type complexes of M 2+ (M = Co, Ni, and Zn) with highly soluble bis(hydrazone)thiopyrimidine-based ligands: Spectroscopy and electrochemical properties. Inorganica Chimica Acta. 468: 131-139. Doi:10.1016/j.ica.2017.05.002

Chaur-Valencia, M. N., Zuluaga Corrales, H. F., Martínez, G. (2018). Electronic and electrochemical properties of gridtype metal ion complexes (Fe+2 and Co2+) with a pyridinepyrimidine-pyridine based bis(hydrazone). Revista Colombiana de Química. 47 (2): 45-53. Doi: 10.15446/rev.colomb.quim.v47n2.66081

Curtis, N. F. (1960). Transition-metal complexes with aliphatic Schiff bases. Part I. Nickel(II) complexes with N-isopropylideneethylenediamine schiff bases. Journal of the Chemical Society (Resumed). 4409-40413. Doi:10.1039/jr9600004409

Dawe, L. N., Shuvaev, K. V., Thompson, L. K. (2009). Polytopic ligand directed self-assembly—polymetallic [n×n] grids versus non-grid oligomers. Chemical Society Reviews. 38 (8): 2334. Doi: 10.1039/b807219c

Dawe, L. N. & Thompson, L. K. (2008). Complete and ‘incomplete’ [2 × 2] grids by self-assembly with a sterically hindered ditopic imidazole hydrazone ligand—structural and magnetic studies. Dalton Transactions. 27: 3610. Doi:10.1039/b800529j

Dietrich-Buchecker, C. O. & Sauvage, J.-P. (1989). A Synthetic Molecular Trefoil Knot. Angewandte Chemie International Edition in English. 28 (2): 189-192. Doi: 10.1002/anie.198901891

Dutta, M., Movassat, M., Brook, D. J. R., Oliver, A., Ward, D. (2011). Molecular motion in zinc hydrazone grid complexes. Supramolecular Chemistry. 23 (9): 632-643. Doi: 10.1080/10610278.2011.593626

Fernández, M. A., Barona, J. C., Polo-Cerón, D., Chaur, M. N. (2015). Estudios fotoquímicos y electroquímicos de complejos lantánidos de 6-(hidroximetil)piridin- 2-carboxaldehído [2-metilpirimidina-4,6-diil] bishidrazona. Revista Colombiana de Química. 43 (1): 5-11. Doi: 10.15446/rev.colomb. quim.v43n1.50540

García, A. M., Romero-Salguero, F. J., Bassani, D. M., Lehn, J. M., Baum, G., Fenske, D. (1999). Selfassembly and characterization of multimetallic gridtype lead(II) complexes. Chemistry - A European

Journal. 5 (6): 1803-1808. Doi: 10.1002/(SICI)1521-3765(19990604)5:6<1803::AID-CHEM1803>3.0.CO;2-M

Gordillo, M. A., Soto-Monsalve, M., Carmona-Vargas, C. C., Gutiérrez, G., D’Vries, R. F., Lehn, J. M., Chaur, M. N. (2017). Photochemical and Electrochemical Triggered Bis(hydrazone) Switch. Chemistry - A European Journal. 23 (59): 14872-14882. Doi: 10.1002/chem.201703065

Hanan, G. S., Volkmer, D., Schubert, U. S., Lehn, J. M., Baum, G., Fenske, D. (1997). Coordination arrays: Tetranuclear cobalt(II) complexes with [2 x 2]-grid structure. Angewandte Chemie - International Edition in English. 36 (17): 1842-1844. Doi: 10.1002/anie.199718421

Hardy, J. G. (2013). Metallosupramolecular grid complexes: Towards nanostructured materials with high-tech applications. Chemical Society Reviews. 42 (19): 7881. Doi:10.1039/c3cs60061k

Harrowfield, J. & Lehn, J. (2012). ChemInform Abstract: Multifunctionality and Multivalency Generation by Selfassembly of Grid-type Metallosupramolecular Architectures. ChemInform. 43 (28): 170-173. Doi: 10.1002/chin.201228260

Hasenknopf, B., Lehn, J. M., Boumediene, N., Dupont-Gervais, A., Van Dorsselaer, A., Kneisel, B., Fenske, D. (1997).

Self-assembly of tetra- and hexanuclear circular helicates. Journal of the American Chemical Society. 119 (45):10956-10962. Doi: 10.1021/ja971204r

Lehn, J.-M. (1988). Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices(Nobel Lecture). Angewandte Chemie International Edition in English. 27 (1): 89-112. Doi: 10.1002/anie.198800891

Lehn, J.-M. (2006). Molecular and Supramolecular Devices. Supramolecular Chemistry. p. 89-138. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA. Doi: 10.1002/3527607439.ch8

Nobelprize.org. (2016). The Nobel Prize in Chemistry 2016 - Advanced Information. Accessed on: December 20, 2018. Available from:https://www.nobelprize.org/prizes/chemistry/2016/advanced-information/

Parween, A., Naskar, S., Mota, A. J., Espinosa Ferao, A., Chattopadhyay, S. K., Rivière, E., … Naskar, S. (2017). C i -Symmetry, [2 × 2] grid, square copper complex with the N 4, N 5 -bis(4-fluorophenyl)-1H-imidazole-4,5-dicarboxamide ligand: Structure, catecholase activity, magnetic properties and DFT calculations. New Journal of Chemistry. 41 (20):11750-11758. Doi: 10.1039/C7NJ01667K

Rojo, Z., Romero-Salguero, F.-J., Lehn, J.-M., Baum, G., Fenske, D. (1999). Self-Assembly, Structure, and Physical Properties of Tetranuclear ZnII and CoII Complexes of [2 x 2] Grid-Type. European Journal of Inorganic Chemistry. 1999: 1421-1428. Doi: 10.1002/(SICI)1099-0682(199909)1999:9%3C1421::AIDEJIC1421%3E3.0.CO;2-J

Ruben, M., Breuning, E., Gisselbrecht, J. P., Lehn, J. M. (2000). Multilevel molecular electronic species: Electrochemical reduction of a [2 x 2] Co4/(II) grid-type complex by 11 electrons in 10 reversible steps. AngewandteChemie - International Edition. 39 (22): 4139-4142. Doi: 10.1002/1521-3773(20001117)39:22<4139::AIDANIE4139>3.0.CO;2-Y

Ruben, M., Breuning, E., Lehn, J.-M., Ksenofontov, V., Renz, F., Gütlich, P., Vaughan, G. B. M. (2003). Supramolecular Spintronic Devices: Spin Transitions and Magnetostructural Correlations in[Fe4IIL4]8+[2×2]-Grid-Type Complexes. Chemistry - A European Journal. 9 (18): 4422-4429. Doi:10.1002/chem.200304933

Ruben, M., Lehn, J.-M., Müller, P. (2006). Addressing metal centres in supramolecular assemblies. Chem. Soc. Rev. 35 (11): 1056-1067. Doi: 10.1039/B517267P

Ruben, M., Lehn, J., Vaughan, G. (2003). Synthesis of ionisable [2 × 2] grid-type metallo-arrays and reversible protonic modulation of the optical properties of the [CoII4L 4 ] 8+species. Chem. Commun. 3 (12): 1338-1339. Doi: 10.1039/B303922F

Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H., Lehn, J.-M. (2004). Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays. Angewandte Chemie International Edition. 43 (28): 3644-3662. Doi: 10.1002/anie.200300636

Shen, F., Huang, W., Wu, D., Zheng, Z., Huang, X.-C., Sato, O. (2016). Redox Modulation of Spin Crossover within a Cobalt Metallogrid. Inorganic Chemistry. 55 (2): 902-908. Doi: 10.1021/acs.inorgchem.5b02442

Stadler, A.-M., Ramírez, J., Lehn, J.-M., Vincent, B. (2016). Supramolecular reactions of metallo-architectures: Ag 2 -double-helicate/Zn 4 -grid, Pb 4 -grid/Zn 4 -grid interconversions, and Ag 2 -double-helicate fusion. Chemical Science. 7 (6): 3689-3693. Doi: 10.1039/C5SC04403K

Stadler, A. M., Kyritsakas, N., Graff, R., Lehn, J. M. (2006). Formation of rack- And grid-type metallosupramolecular architectures and generation of molecular motion by reversible uncoiling of helical ligand strands. Chemistry - A European Journal. 12 (17): 4503-4522. Doi: 10.1002/chem.200501202

Stefankiewicz, A. R., Harrowfield, J., Madalan, A. M., Lehn, J.-M. (2013). Tuning the planarity of [2 × 2] grids. CrystEngComm. 15 (44): 9128. Doi: 10.1039/c3ce41510d

Stefankiewicz, A. R., Rogez, G., Harrowfield, J., Drillon, M., Lehn, J.-M. (2009). Structural features directing the specificity and functionality of metallo-supramolecular grid-type architectures. Dalton Transactions. 29: 5787. Doi: 10.1039/b902262g

Stefankiewicz, A. R., Wałęsa-Chorab, M., Szcześniak, H. B., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. (2010). Grid-corner analogues: Synthesis, characterisation and spectroscopic properties of meridional complexes of tridentate NNO Schiff-base ligands. Polyhedron. 29 (1): 178-187. Doi: 10.1016/j.poly.2009.06.069

Thompson, L. K., Waldmann, O., Xu, Z. (2005). Polynuclear manganese grids and clusters - A magnetic perspective. Coordination Chemistry Reviews. 249 (23): 2677-2690. Doi: 10.1016/j.ccr.2005.07.002

Uppadine, L. H., Gisselbrecht, J. P., Kyritsakas, N., Nättinen, K., Rissanen, K., Lehn, J. M. (2005). Mixed-valence, mixed-spin-state, and heterometallic [2×2] grid-type arrays based on heteroditopic hydrazone ligands: Synthesis and electrochemical features. Chemistry - A European Journal. 11 (8): 2549-2565. Doi: 10.1002/chem.200401224

Wang, S., Men, G., Zhao, L., Hou, Q., Jiang, S. (2010). Binaphthyl-derived salicylidene Schiff base for dualchannel sensing of Cu, Zn cations and integrated molecular logic gates. Sensors and Actuators, B: Chemical. 145 (2): 826-831. Doi: 10.1016/j.snb.2010.01.060

Wasserman, E. (1960). the Preparation of Interlocking Rings: a Catenane1. Journal of the American Chemical Society. 82 (16): 4433-4434. Doi: 10.1021/ja01501a082

Wu, S. Q., Wang, Y. T., Cui, A. L., Kou, H. Z. (2014). Toward higher nuclearity: Tetranuclear cobalt(II) metallogrid exhibiting spin crossover. Inorganic Chemistry. 53 (5):2613-2618. Doi: 10.1021/ic402971a

Youinou, M.-T., Rahmouni, N., Fischer, J., Osborn, J. A. (1992). Self-Assembly of a Cu4 Complex with Coplanar Copper(I) Ions: Synthesis, Structure, and Electrochemical Properties. Angewandte Chemie International Edition in English. 31(6): 733-735. Doi: 10.1002/anie.199207331

Yu, F., Hou, L. J., Qin, L. Y., Chao, J. Bin, Wang, Y., Jin, W. J. (2016). A new colorimetric and turn-on fluorescent chemosensor for Al3+ in aqueous medium and its application in live-cell imaging. Journal of Photochemistry and Photobiology A: Chemistry. 315: 8-13. Doi: 10.1016/j.jphotochem.2015.09.006

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales