Resumen
El ruido vehicular representa una fuente significativa de contaminación acústica en entornos urbanos que afecta la salud y el bienestar de los habitantes. Este estudio propone un modelo matemático para predecir y mitigar los niveles de ruido vehicular, integrando variables claves como el volumen, la velocidad y la composición del tráfico. La metodología incluyó la recolección de datos en cuatro puntos de la ciudad de Milagro, Ecuador, y el análisis mediante las herramientas QGIS y MATLAB, bajo el estándar RLS 90/DIN con ecuaciones de regresión lineal. Se estimó una reducción del 15 % del ruido con la implementación de barreras acústicas. El modelo demostró una mayor precisión y replicabilidad comparado con estudios previos. En cuanto a limitaciones del estudio, se reconoce la omisión de factores como la vegetación y las condiciones meteorológicas. El modelo puede contribuir a diseñar políticas públicas de planificación urbana y control de la contaminación acústica.
Referencias
Ahac, M., Ahac, S., & Lakušić, S. (2021). Long-term sustainability approach in road traffic noise wall design. Sustainability, 13(2), 536. https://doi.org/10.3390/su13020536
Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). Noise monitoring, mapping, and modelling studies – A review. Journal of Ecological Engineering, 21(4). https://doi.org/10.12911/22998993/119804
Amoatey, P., Omidvarbona, H., Baawain, M. S., Al-Mayahi, A., Al-Mamun, A., & Al-Harthy, I. (2020). Exposure assessment to road-traffic noise levels and health effects in an arid urban area. Environmental Science and Pollution Research, 27(28), 35051–35064. https://doi.org/10.1007/s11356-020-09785-y
Amran, M., Fediuk, R., Murali, G., Vatin, N., & Al-Fakih, A. (2021). Sound-absorbing acoustic concretes: A review. Sustainability, 13(19), 712. https://doi.org/10.3390/su131910712
Bakker, J., Lugten, M., & Tenpierik, M. (2023). Applying vertical greening systems to reduce traffic noise in outdoor environments: Overview of key design parameters and research methods. Building Acoustics, 30(3), 315–338. https://doi.org/10.1177/1351010X231171028
Bramich, D. M., Menéndez, M., & Ambühl, L. (2022). Fitting empirical fundamental diagrams of road traffic: A comprehensive review and comparison of models using an extensive data set. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14104–14127. https://doi.org/10.1109/TITS.2022.3142255
Bravo‑Moncayo, L., Garzón, C., Chávez, M., Pavón‑García, I., & Lucio‑Naranjo, J. (2023). Spatial assessment of traffic noise using hybrid machine learning and geostatistical techniques: A case study in Cuenca, Ecuador. Sustainability, 15(10), 10020. https://doi.org/10.3390/su151010020
Casali, J. G. (2021). Sound and noise: Measurement and design guidance. In Handbook of Human Factors and Ergonomics (pp. 457–493). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119636113.ch18
Epstein, M. J. (2020). Sound and Noise: A Listener’s Guide to Everyday Life. McGill‑Queen’s Press‑MQUP.
Farooqi, Z. U. R., Ahmad, I., Ditta, A., Ilic, P., Amin, M., Naveed, A. B., & Gulzar, A. (2022). Types, sources, socioeconomic impacts, and control strategies of environmental noise: A review. Environmental Science and Pollution Research, 29(54), 81087–81111. https://doi.org/10.1007/s11356-022-23328-7
Fediuk, R., Amran, M., Vatin, N., Vasilev, Y., Lesovik, V., & Ozbakkaloglu, T. (2021). Acoustic properties of innovative concretes: A review. Materials, 14(2), 398. https://doi.org/10.3390/ma14020398
Feng, Z., & Liu, Y. (2025). The latest research status of porous sound-absorbing materials. Journal of Polymer Engineering, 45(3), 207–225. https://doi.org/10.1515/polyeng-2024-0211
Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B., & Hou, H. (2022). Acoustic metamaterials for noise reduction: A review. Advanced Materials Technologies, 7(6), 2100698. https://doi.org/10.1002/admt.202100698
Garg, N. (2022). Environmental noises control strategies. In N. Garg (Ed.), Environmental Noise Control: The Indian Perspective in an International Context (pp. 277–344). Springer International Publishing. https://doi.org/10.1007/978-3-030-87828-3_7
Gilani, T. A., & Mir, M. S. (2021). A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environmental Science and Pollution Research, 28(44), 63045–63064. https://doi.org/10.1007/s11356-021-15208-3
Hansen, C. H., & Hansen, K. L. (2021). Noise Control: From Concept to Application (2nd ed.). CRC Press. https://doi.org/10.1201/9780429428876
He, W., He, K., Zou, C., & Yu, Y. (2021). Experimental noise and vibration characteristics of elevated urban rail transit considering the effect of track structures and noise barriers. Environmental Science and Pollution Research, 28(33), 45903–45919. https://doi.org/10.1007/s11356-021-14015-0
Ibili, F., Adanu, E. K., Adams, C. A., Andam-Akorful, S. A., Turay, S. S., & Ajayi, S. A. (2022). Traffic noise models and noise guidelines: A review. Noise & Vibration Worldwide, 53(1–2), 65–79. https://doi.org/10.1177/09574565211052693
Krittanawong, C., Qadeer, Y. K., Hayes, R. B., Wang, Z., Virani, S., Zeller, M., Dadvand, P., & Lavie, C. J. (2023). Noise exposure and cardiovascular health. Current Problems in Cardiology, 48(12), 101938. https://doi.org/10.1016/j.cpcardiol.2023.101938
Kumar, B. S., & Chowdary, V. (2024). Railway noise pollution in urban environments. In N. Garg, C. Gautam, S. Rab, M. Wan, R. Agarwal, & S. Yadav (Eds.), Handbook of Vibroacoustics, Noise and Harshness (pp. 1–38). Springer Nature. https://doi.org/10.1007/978-981-99-4638-9_2-1
Kumar, S., Xiang, T. B., & Lee, H. P. (2020). Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Applied Acoustics, 159, 107088. https://doi.org/10.1016/j.apacoust.2019.107088
Lakshmanan, V., Robinson, S., & Munn, M. (2020). Machine Learning Design Patterns. O’Reilly Media, Inc.
Laxmi, V., Thakre, C., & Vijay, R. (2022). Evaluation of noise barriers based on geometries and materials: A review. Environmental Science and Pollution Research, 29(2), 1729–1745. https://doi.org/10.1007/s11356-021-16944-2
Lázaro, J., Pereira, M., Costa, P. A., & Godinho, L. (2022). Performance of low-height railway noise barriers with porous materials. Applied Sciences, 12(6), 2960. https://doi.org/10.3390/app12062960
Lee, H. P., Lim, K. M., & Kumar, S. (2021). Noise assessment of elevated rapid transit railway lines and acoustic performance comparison of different noise barriers for mitigation of elevated railway tracks noise. Applied Acoustics, 183, 108340. https://doi.org/10.1016/j.apacoust.2021.108340
Li, M., Yuan, M., Li, J., Li, Y., Zhou, W., & Zu, Y. (2023). Research and application of combined noise reduction method by using noise reducing pavement and noise barrier. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 268(8), 253–259. https://doi.org/10.3397/IN_2023_0053
Liao, G., Luan, C., Wang, Z., Liu, J., Yao, X., & Fu, J. (2021). Acoustic metamaterials: A review of theories, structures, fabrication approaches, and applications. Advanced Materials Technologies, 6(5), 2000787. https://doi.org/10.1002/admt.202000787
Liu, D., Wang, C., González-Libreros, J., Tu, Y., Elfgren, L., & Sas, G. (2023). A review on aerodynamic load and dynamic behavior of railway noise barriers when high-speed trains pass. Journal of Wind Engineering and Industrial Aerodynamics, 239, 105458. https://doi.org/10.1016/j.jweia.2023.105458
Masum, M. H., Pal, S. K., Akhie, A. A., Ruva, I. J., Akter, N., & Nath, S. (2021). Spatiotemporal monitoring and assessment of noise pollution in an urban setting. Environmental Challenges, 5, 100218. https://doi.org/10.1016/j.envc.2021.100218
Mikhailenko, P., Piao, Z., Kakar, M. R., Bueno, M., Athari, S., Pieren, R., Heutschi, K., & Poulikakos, L. (2022). Low-noise pavement technologies and evaluation techniques: A literature review. International Journal of Pavement Engineering, 23(6), 1911–1934. https://doi.org/10.1080/10298436.2020.1830091
Montes, D., Barrigón, J. M., & Rey-Gozalo, G. (2023). Effects of noise on pedestrians in urban environments where road traffic is the main source of sound. Science of the Total Environment, 857, 159406. https://doi.org/10.1016/j.scitotenv.2022.159406
Munir, S., Khan, S., Nazneen, S., & Ahmad, S. S. (2021). Temporal and seasonal variations of noise pollution in urban zones: A case study in Pakistan. Environmental Science and Pollution Research, 28(23), 29581–29589. https://doi.org/10.1007/s11356-021-12738-8
Nourani, V., Gökçekuş, H., & Umar, I. K. (2020). Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environmental Research, 180, 108852. https://doi.org/10.1016/j.envres.2019.108852
Olczak, K., Penar, W., Nowicki, J., Magiera, A., & Klocek, C. (2023). The role of sound in livestock farming—Selected aspects. Animals, 13(14), 2307. https://doi.org/10.3390/ani13142307
Oquendo-Di Cosola, V., Olivieri, F., & Ruiz-García, L. (2022). A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renewable and Sustainable Energy Reviews, 162, 112463. https://doi.org/10.1016/j.rser.2022.112463
Owolabi, O., Lodico, D., Butterfield, E., Shokouhian, M., Abiodun, P., Darko, C., & Duru, C. (2024). Effectiveness of short solid barriers to reduce noise generated by different types of highway vehicles. U.S. Department of Transportation. https://rosap.ntl.bts.gov/view/dot/79847
Partheeban, P., Karthik, K., Navin Elamparithi, P., Somasundaram, K., & Anuradha, B. (2021). Urban road traffic noise on human exposure assessment using geospatial technology. Environmental Engineering Research, 27(5), 210249. https://doi.org/10.4491/eer.2021.249
Reche, C., Tobias, A., & Viana, M. (2022). Vehicular traffic in urban areas: Health burden and influence of sustainable urban planning and mobility. Atmosphere, 13(4), 598. https://doi.org/10.3390/atmos13040598
Rey, G., Suárez, E., Montenegro, A. L., Arenas, J. P., Barrigón, J. M., & Montes, D. (2020). Noise estimation using road and urban features. Sustainability, 12(21), 217. https://doi.org/10.3390/su12219217
Saakian, A. (2020). Radio Wave Propagation Fundamentals (2nd ed.). Artech House.
Sharma, S., Sudhakara, P., Singh, J., Singh, S., & Singh, G. (2023). Emerging progressive developments in the fibrous composites for acoustic applications. Journal of Manufacturing Processes, 102, 443–477. https://doi.org/10.1016/j.jmapro.2023.07.053
Sivakumaran, K., Ritonja, J. A., Waseem, H., AlShenaibar, L., Morgan, E., Ahmadi, S. A., Denning, A., Michaud, D. S., & Morgan, R. L. (2022). Impact of noise exposure on risk of developing stress-related health effects related to the cardiovascular system: A systematic review and meta-analysis. Noise and Health, 24(114), 107. https://doi.org/10.4103/nah.nah_83_21
Yadav, D., Garg, N., Gautam, C., Agarwal, R., & Yadav, S. (2025). Noise pollution: The silent intruder to health and well-being. In N. Garg, C. Gautam, S. Rab, M. Wan, R. Agarwal, & S. Yadav (Eds.), Handbook of Vibroacoustics, Noise and Harshness (pp. 1185–1203). Springer Nature. https://doi.org/10.1007/978-981-97-8100-3_63
Yan, S., Yuan, L., Wang, C., Diao, Q., Ren, X., Pan, X., Su, W., Chang, L., Zou, H., Shi, X., & Lin, B. (2023). A modular design approach for porous green sound-absorbing concrete for the noise barrier on high-speed railway. Journal of Building Engineering, 77, 107543. https://doi.org/10.1016/j.jobe.2023.107543
Yang, W., He, J., He, C., & Cai, M. (2020). Evaluation of urban traffic noise pollution based on noise maps. Transportation Research Part D: Transport and Environment, 87, 102516. https://doi.org/10.1016/j.trd.2020.102516
Yu, W., Jang, J.-C., Zhu, Y., Peng, J., Yang, W., & Li, K. (2024). Enhanced estimation of traffic noise levels using minute-level traffic flow data through convolutional neural network. Sustainability, 16(14), 6088. https://doi.org/10.3390/su16146088
Zaman, M., Muslim, M., & Jehangir, A. (2022). Environmental noise-induced cardiovascular, metabolic and mental health disorders: A brief review. Environmental Science and Pollution Research, 29(51), 76485–76500. https://doi.org/10.1007/s11356-022-22351-y

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales