Optimización de la metodología de extracción de plaguicidas organofosforados por HS-SPME-GC-NPD
PDF (Inglés)

Palabras clave

Cromatografía
GC-NPD
Organofosforados

Cómo citar

Fiscal-Ladino, J. A., Taborda-Ocampo, G., & Betancourt-Arango, J. P. (2025). Optimización de la metodología de extracción de plaguicidas organofosforados por HS-SPME-GC-NPD. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3173

Societal impact


Resumen

Los compuestos organofosforados se encuentran ampliamente en el medio ambiente y se sabe que ejercen efectos nocivos en la salud humana al inhibir la acetilcolinesterasa (AChE), una enzima clave del sistema nervioso. El objetivo de nuestro estudio fue optimizar una metodología de extracción sin disolventes para la determinación de cinco residuos organofosforados, clorpirifos, metamidofós, fenitrotión, diclorvos y dimetoato, en muestras de agua mediante microextracción en fase sólida (SPME) combinada con cromatografía de gases y detección de nitrógeno-fósforo (GC-NPD). Se aplicó un diseño experimental para evaluar cinco variables críticas: tipo de fibra, tiempo de extracción, temperatura, velocidad de agitación y concentración de sal. El mejor rendimiento en la extracción se obtuvo utilizando una fibra DVB/CAR/PDMS durante 20 minutos a 50 °C, 500 rpm y 1% de NaCl. Bajo estas condiciones el método demostró una excelente linealidad (r2 hasta 0,9892), límites de detección entre 1,088 y 3,114 μg/L, límites de cuantificación entre 3,264 y 9,342 μg/L, y una precisión con valores de %RSD que oscilaron entre 0,998 y 3,599. Estos resultados confirmaron que el método propuesto es rápido, sencillo, sensible y sólido. Su optimización contribuye al desarrollo de estrategias analíticas ecológicas para la monitorización de la contaminación por pesticidas en ambientes acuosos.

PDF (Inglés)

Referencias

Anjos, J. & Andrade, J. (2014). Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS. Microchemical Journal, 112, 119-126. https://doi.org/10.1016/j.microc.2013.10.001

Betancourt-Arango, J. P., Ossa-Jaramillo, C. A., & Taborda-Ocampo, G. (2021). Extracción de plaguicidas en el aguacate Hass (Persea americana Mill. cv.) mediante el uso de C18 y arcillas funcionales como fase adsorbente en la metodología QuEChERS. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45, 1-14. https://doi.org/10.18257/raccefyn.1235

Betancourt-Arango, J., Patiño-Ospina, A., Fiscal-Ladino, J., Taborda-Ocampo, G. (2025). Xenovolatilomic profiling of Hass avocado (Persea americana Mill.) tissues exposed to endosulfan: identification of potential toxicity biomarkers. Sustainable Food Technology, 3, 1-23. https://doi.org/10.1039/D5FB00163C

Bravo, N., Garí, M., Grimalt, J. O. (2022). Occupational and residential exposures to organophosphate and pyrethroid pesticides in a rural setting. Environmental Research, 214, 114186. https://doi.org/10.1016/j.envres.2022.114186

Cao, M., Han, Q., Zhang, J., Zhang, R., Wang, J., Gu, W., Kang, W., Lian, K., Ai, L. (2020). An untargeted and pseudotargeted metabolomic combination approach to identify differential markers to distinguish live from dead pork meat by liquid chromatography–mass spectrometry. Journal of Chromatography A, 1610, 460553. https://doi.org/10.1016/j.chroma.2019.460553

Castro, P. A., Ramos, J. P., Estévez, S. L., Rangel, A. (2004). Organophosphate pesticide residues in samples of tomato. Revista de Ingeniería, 20, 14-22. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932004000200002

Chen, H., Pan, M., Liu, X., Lu, C. (2017). Evaluation of transfer rates of multiple pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultraperformance liquid chromatography tandem mass spectrometry. Food Chemistry, 216, 1-9. https://doi.org/10.1016/j.foodchem.2016.07.175

Ciriello, R., Lo Magro, S., Guerrieri, A. (2018). Assay of serum cholinesterase activity by an amperometric biosensor based on a co-crosslinked choline oxidase/overoxidized polypyrrole bilayer. Analyst, 143(4), 920-929. https://doi.org/10.1039/C7AN01757J

Fabjanowicz, M., Kalinowska, K., Namieśnik, J., Płotka-Wasylka, J. (2018). Evaluation of Green Sample Preparation Techniques for Organic Compounds. Current Green Chemistry, 5(3), 168-176. https://doi.org/10.2174/2213346105666181112124629

Fernández, D.G., Mancipe, L. C., Fernández, D.C. (2010). Intoxicación por organofosforados. Revista MED, 18(1), 84-92.

Fernández-de Miguel, S., Serrano-Ayestarán, O., Fernández-Carrión, F., Gómez-de Quero, P., Sánchez-Granados, J. M. (2009). Intoxicación domiciliaria por organofosforados. Anales de Pediatria, 71(5), 478-479. https://doi.org/10.1002/14651858.CD005085.9

Filho, A., dos Santos, F. N., Pereira, P. A. de P. (2010). Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes. Talanta, 81(1-2), 346-354. https://doi.org/10.1016/j.talanta.2009.12.008

Gavidia, T., Ditulio, R., Sabala, G., Sequera, J. (2017). Residuos de plaguicidas organofosforados en suelos del municipio José María Vargas, Táchira-Venezuela. Aibi Revista de Investigación, Administración e Ingeniería, 5, 2-8. https://doi.org/10.15649/2346030X.411

Gervilla-Caño, J., Otal-Bareche, J., Torres-Justribó, M., Durán-Rabés, J. (2007). Intoxicación por organofosforados. SEMERGEN - Medicina de Familia, 33(1), 21-23. https://doi.org/10.1016/S1138-3593(07)73839-X

Guerrero, J. (2003). Estudio de residuos de plaguicidas en frutas y hortalizas en áreas específicas de Colombia. Agronomía Colombiana, 21(3), 198-209.

Harwood, A. D., Landrum, P. F., Weston, D. P., Lydy, M. J. (2013). Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments. Environmental Pollution, 173, 47-51. https://doi.org/10.1016/j.envpol.2012.09.012

Hassan, A., Sajid, M., Al Ghafly, H., Alhooshani, K. (2020). Ionic liquid-based membrane-protected micro-solid-phase extraction of organochlorine pesticides in environmental water samples. Microchemical Journal, 158, 105295. https://doi.org/10.1016/j.microc.2020.105295

Huba, A. K., Mirabelli, M. F., Zenobi, R. (2018). High-throughput screening of PAHs and polar trace contaminants in water matrices by direct solid-phase microextraction coupled to a dielectric barrier discharge ionization source. Analytica Chimica Acta, 1030, 125-132. https://doi.org/10.1016/j.aca.2018.05.050

Jaramillo-Colorado, B. E. (2016). Residuos de pesticidas organofosforados en frutas obtenidas de plazas de mercado y supermercados en Cartagena, Colombia. Revista Ciencias Técnicas Agropecuarias, 25, 39-46. https://revistas.unah.edu.cu/index.php/rcta/article/view/462

Li, J.-W., Wang, Y.-L., Yan, S., Li, X.-J., Pan, S.-Y. (2016). Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chemistry, 192, 260-267. https://doi.org/10.1016/j.foodchem.2015.07.018

Liang, D., Liu, W., Raza, R., Bai, Y., Liu, H. (2019). Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis. Journal of Separation Science, 42(1), 330-341. https://doi.org/10.1002/jssc.201800804

Mali, H., Shah, C., Raghunandan, B. H., Prajapati, A. S., Patel, D. H., Trivedi, U., Subramanian, R. B. (2023). Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. Journal of Environmental Sciences, 127, 234-250. https://doi.org/10.1016/j.jes.2022.04.023

Milhome, M., Sousa, P., De Keukeleire, D., do Nascimento, R. (2011). Multiresidue Methods for Determination of Pesticides using SPME and SPE Followed by GC-NPD System: a Comparative Study. Journal of the Brazilian Chemical Society, 22, 2048-2055. https://doi.org/10.1590/S0103-50532011001100005

Mu, R., He, X., Gao, X., Jia, J., Li, J. (2018). Determination of Malathion Using Corona Discharge–Ion Mobility Spectrometry with Solid-Phase Microextraction. Analytical Letters, 51(6), 807-819. https://doi.org/10.1080/00032719.2017.1362645

Murcia, A. M. & Stashenko, E. (2008). Determinación de plaguicidas organofosforados en vegetales producidos en Colombia. Agro Sur, 36, 71-81. https://doi.org/10.4206/agrosur.2008.v36n2-03

Musshoff, F., Junker, H., Madea, B. (2002). Simple determination of 22 organophosphorous pesticides in human blood using headspace solid-phase microextraction and gas chromatography with mass spectrometric detection. Journal of Chromatographic Science, 40(1), 29-34. https://doi.org/10.1093/chromsci/40.1.29

Pellicer-Castell, E., Belenguer-Sapiña, C., Amorós, P., El Haskouri, J., Herrero-Martínez, J. M., Mauri-Aucejo, A. (2018). Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples. Talanta, 189, 560-567. https://doi.org/10.1016/j.talanta.2018.07.044

C., Barkoski, J., Tancredi, D. J., Elms, B., Barr, D. B., Ozonoff, S., Bennett, D. H., Hertz-Picciotto, I. (2018). Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. International Journal of Hygiene and Environmental Health, 221(3), 548-555. https://doi.org/10.1016/j.ijheh.2018.02.004

Quintero, A., Caselles, J., Ettiene, G., de Colmenares, N., Pallares, J. (2013). Método multiresidual simplificado para la determinación de residuos de plaguicidas organfosforados en vegetales. Revista de La Facultad de Agronomía de La Universidad Del Zulia, 30(1 SE-). https://produccioncientificaluz.org/index.php/agronomia/article/view/27107

Silva, É. A. S., Lopez-Avila, V., Pawliszyn, J. (2013). Fast and robust direct immersion solid phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry method employing a matrix compatible fiber for determination of triazole fungicides in fruits. Journal of Chromatography. A, 1313, 139-146. https://doi.org/10.1016/j.chroma.2013.07.071

Sun, T.-T. (2004). Excessive trust in authorities and its influence on experimental design. Nature Reviews. Molecular Cell Biology, 5(7), 577-581. https://doi.org/10.1038/nrm1429

Tankiewicz, M., Morrison, C., Biziuk, M. (2013). Multi-residue method for the determination of 16 recently used pesticides from various chemical groups in aqueous samples by using DI-SPME coupled with GC–MS. Talanta, 107, 1-10. https://doi.org/10.1016/j.talanta.2012.12.052

Toro-Osorio, B. M., Rojas-Rodríguez, A. E., Díaz-Zapata, J. A. (2017). Levels of serum cholinesterase in coffee growers from the caldas department, Colombia. Revista de Salud Publica, 19(3), 318-324. https://doi.org/10.15446/rsap.v19n3.52742

Tsoukali, H., Theodoridis, G., Raikos, N., Grigoratou, I. (2005). Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples. Journal of Chromatography B, 822(1), 194-200. https://doi.org/10.1016/j.jchromb.2005.05.035

Vievard, J., Amoikon, T. L.-S., Coulibaly, N. A., Devouge-Boyer, C., Arellano-Sánchez, M. G., Aké, M. F. D., Djeni, N. T., Mignot, M. (2022). Extraction and quantification of pesticides and metals in palm wines by HS-SPME/GC-MS and ICP-AES/MS. Food Chemistry, 393, 133352. https://doi.org/10.1016/j.foodchem.2022.133352

Wang, P., Luo, M., Liu, D., Zhan, J., Liu, X., Wang, F., Zhou, Z., Wang, P. (2018). Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. Journal of Chromatography. A, 1535, 9-16. https://doi.org/10.1016/j.chroma.2018.01.003

Wani, A. A., Dar, A. A., Jan, I., Sofi, K. A., Sofi, J. A., Dar, I. H. (2019). Method validation and simultaneous quantification of eight organochlorines/organophosphates in apple by gas chromatography. Journal of the Science of Food and Agriculture, 99(7), 3687-3692. https://doi.org/10.1002/jsfa.9599

Wu, G., Shi, W., Zheng, L., Wang, X., Tan, Z., Xie, E., Zhang, D. (2024). Impacts of organophosphate pesticide types and concentrations on aquatic bacterial communities and carbon cycling. Journal of Hazardous Materials, 475, 134824. https://doi.org/10.1016/j.jhazmat.2024.134824

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##