Resumen
Definimos los grupos de K-teoría magnética equivariante como los grupos de K-teoría asociadas a grupos magnéticos y sus respectivos fibrados complejos magnéticos equivariantes. Restringimos el grupo magnético al subgrupo de elementos que actuan complejo linealmente, y mostramos que esta restricción induce un isomorfismo racional con la parte invariante bajo conjugación de la K teoría compleja equivariante del subgrupo restringido. Este isomorfismo permite calcular la parte libre de torsion de la K-teoría magnética equivariante reduciéndola a cálculos conocidos en K-teoría equivariante compleja.
Referencias
Adem, A., Ruan, Y. (2003) Twisted orbifold K-theory. Commun. Math. Phys., 237(3), 533–556. https://doi.org/10.1007/s00220-003-0849-x
Atiyah, M. F., Segal, G. B. (1969) Equivariant K-theory and completion. J. Differential Geometry, 3, 1–18. http://projecteuclid.org/euclid.jdg/1214428815
Atiyah, M. F. (1966) K-theory and reality. Q. J. Math., Oxf. II. Ser., 17, 367–386. https: //doi.org/10.1093/qmath/17.1.367
Bellissard, J., van Elst, A., Schulz- Baldes, H. (1994) The noncommutative geometry of the quantum hall effect. Journal of Mathematical Physics, 35(10), 5373–5451. https://doi.org/10.1063/1.530758
Bellissard, J. (1986) K-theory ofC∗-algebras in solid state physics. In Statistical mechanics and field theory: Mathematical aspects (Groningen, 1985) (pp. 99–156, Vol. 257). Springer, Berlin. https://doi.org/10.1007/3-540-16777-3 74
Bernevig, B. A., Zhang, S.-C. (2006) Quantum spin hall effect. Phys. Rev. Lett., 96, 106802. https://doi.org/10.1103/PhysRevLett.96.106802
Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei,P., Wang, L.-L., Ji, Z.-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.-C., He, K., ... Xue, Q.-K. (2013) Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129), 167–170. https://doi.org/10.1126/science.1234414
Day, I. A., Varentcova, A., Varjas, D., Akhmerov, A. R. (2023) Pfaffian invariant identifies magnetic obstructed atomic insulators. SciPost Phys., 15, 114. https://doi.org/10.21468/SciPostPhys.15.3.114
Dupont, J. L. (1969) Symplectic bundles and KR-theory. Math. Scand., 24, 27–30. https: //doi.org/10.7146/math.scand.a-10918
Freed, D. S., Moore, G. W. (2013) Twisted equivariant matter. Ann. Henri Poincare´, 14(8), 1927–2023. https://doi.org/10.1007/s00023-013-0236-x
Gibney, E., Castelvecchi, D. (2016) Physics of 2d exotic matter wins nobel. Nature, 538, 7623. https://doi.org/doi.org/10.1038/nature.2016.20722
Gomi, K. (2023) Freed-Moore K-theory. Comm. Anal. Geom., 31(4), 979–1067.
Gonzalez-Hernández, R., Serrano, H., Uribe, B.´ (2025) Spin Chern number in altermagnets. Phys. Rev. B, 111, 085127. https://doi.org/10.1103/PhysRevB.111.085127
Haldane, F. D. M. (1988) Model for a quantum hall effect without landau levels: Condensedmatter realization of the ”parity anomaly”. Phys. Rev. Lett., 61, 2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015
Heesch, H. (1930) Uber die vierdimensionalen gruppen des dreidimensionalen raumes.¨ Zeitschrift fur Kristallographie - Crystalline Materials¨ , 73(1-6), 325–345. https://doi.org/doi:10.1524/zkri.1930.73.1.325
Kane, C. L., Mele, E. J. (2005a) Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett., 95, 146802. https://doi.org/10.1103/PhysRevLett.95.146802
Kane, C. L., Mele, E. J. (2005b) Quantum spin hall effect in graphene. Phys. Rev. Lett., 95, 226801. https://doi.org/10.1103/PhysRevLett.95.226801
Karoubi, M. (1970) Sur la K-theorie´ equivariante. In´ Seminaire Heidelberg-Saarbr´ ucken-¨ Strasbourg sur la K-theorie (1967/68)´ (pp. 187–253, Vol. Vol. 136). Springer, Berlin-New York.
Konig, M., Wiedmann, S., Br¨ une, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi,¨ X.-L., Zhang, S.-C. (2007) Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047
Kou, X., Guo, S.-T., Fan, Y., Pan, L., Lang, M., Jiang, Y., Shao, Q., Nie, T., Murata, K., Tang, J., Wang, Y., He, L., Lee, T.-K., Lee, W.-L., Wang, K. L. (2014) Scaleinvariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett., 113, 137201. https://doi.org/10.1103/ PhysRevLett.113.137201
May, J. P. (1996) Equivariant homotopy and cohomology theory (Vol. 91) [With contributions by M. Cole, G. Comezana, S. Costenoble, A. D. Elmendorf, J. P. C. Green-˜ lees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner]. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI.https://doi.org/10.1090/cbms/091
Segal, G. (1968) Equivariant K-theory. Inst. Hautes Etudes Sci. Publ. Math.´ , (34), 129–151. http://www.numdam.org/item?id=PMIHES 1968 34 129 0
Serrano, H. (2025) Magnetic equivariant K-theory. Phd thesis. CINVESTAV, Mexico,´
Shiozaki, K., Sato, M., Gomi, K. (2017) Topological crystalline materials: General formulation, module structure, and wallpaper groups. Phys. Rev. B, 95, 235425. https://doi.org/10.1103/PhysRevB.95.235425
Shiozaki, K., Sato, M., Gomi, K. (2022) Atiyah-hirzebruch spectral sequence in band topology: General formalism and topological invariants for 230 space groups. Phys. Rev. B, 106, 165103. https://doi.org/10.1103/PhysRevB.106.165103
Smejkal, L., González-Hernández, R., Jungwirth, T., Sinova, J.´ (2020) Crystal timereversal symmetry breaking and spontaneous hall effect in collinear antiferromagnets. Science Advances, 6(23), eaaz8809. https://doi.org/10.1126/sciadv.aaz8809
Subnikov,, A. V. (1951) Simmetriya i antisimmetriya konecnyh figurˇ . Izdat. Akad. Nauk SSSR, Moscow.
Thouless, D. J., Kohmoto, M., Nightingale, M. P., den Nijs, M. (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405– 408. https://doi.org/10.1103/PhysRevLett.49.405
Wigner, E. P. (1959) Group theory and its application to the quantum mechanics of atomic spectra (Vol. Vol. 5) [Expanded and improved ed. Translated from the German by J. J. Griffin]. Academic Press, New York-London.
Zou, J.-Y., Fu, B., Shen, S. (2024) Topological properties of c4zt-symmetric semimetals. Communications Physics. https://api.semanticscholar.org/CorpusID:272160798

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales