Rational magnetic equivariant K-theory
PDF

Keywords

Magnetic group
Equivariant K-theory
Real K-theory
Quaternionic K-theory

How to Cite

Serrano, H., Uribe, B., & Xicoténcatl, M. A. (2025). Rational magnetic equivariant K-theory. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 49(190), 183-197. https://doi.org/10.18257/raccefyn.3105

Abstract

We introduce the magnetic equivariant K-theory groups as the K-theory groups associated to the magnetic groups and their respective magnetic equivariant complex bundles. We restrict the magnetic group to its subgroup of elements that act complex linearly, and we show that this restriction induces a rational isomorphism with the conjugation invariant part of the complex equivariant K-theory of the restricted group. This isomorphism allows us to calculate the torsion free part of the magnetic equivariant K-theory groups reducing it to known calculations in complex equivariant K-theory. 

PDF

References

Adem, A., Ruan, Y. (2003) Twisted orbifold K-theory. Commun. Math. Phys., 237(3), 533–556. https://doi.org/10.1007/s00220-003-0849-x

Atiyah, M. F., Segal, G. B. (1969) Equivariant K-theory and completion. J. Differential Geometry, 3, 1–18. http://projecteuclid.org/euclid.jdg/1214428815

Atiyah, M. F. (1966) K-theory and reality. Q. J. Math., Oxf. II. Ser., 17, 367–386. https://doi.org/10.1093/qmath/17.1.367

Bellissard, J., van Elst, A., Schulz- Baldes, H. (1994) The noncommutative geometry of the quantum hall effect. Journal of Mathematical Physics, 35(10), 5373–5451. https://doi.org/10.1063/1.530758

Bellissard, J. (1986) K-theory ofC∗-algebras in solid state physics. In Statistical mechanics and field theory: Mathematical aspects (Groningen, 1985) (pp. 99–156, Vol. 257). Springer, Berlin. https://doi.org/10.1007/3-540-16777-3_74

Bernevig, B. A., Zhang, S.-C. (2006) Quantum spin hall effect. Phys. Rev. Lett., 96, 106802. https://doi.org/10.1103/PhysRevLett.96.106802

Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei,P., Wang, L.-L., Ji, Z.-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.-C., He, K., ... Xue, Q.-K. (2013) Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129), 167–170. https://doi.org/10.1126/science.1234414

Day, I. A., Varentcova, A., Varjas, D., Akhmerov, A. R. (2023) Pfaffian invariant identifies magnetic obstructed atomic insulators. SciPost Phys., 15, 114. https://doi.org/10.21468/SciPostPhys.15.3.114

Dupont, J. L. (1969) Symplectic bundles and KR-theory. Math. Scand., 24, 27–30. https://doi.org/10.7146/math.scand.a-10918

Freed, D. S., Moore, G. W. (2013) Twisted equivariant matter. Ann. Henri Poincaré, 14(8), 1927–2023. https://doi.org/10.1007/s00023-013-0236-x

Gibney, E., Castelvecchi, D. (2016) Physics of 2d exotic matter wins nobel. Nature, 538, 7623. https://doi.org/doi.org/10.1038/nature.2016.20722

Gomi, K. (2023) Freed-Moore K-theory. Comm. Anal. Geom., 31(4), 979–1067.

Gonzalez-Hernández, R., Serrano, H., Uribe, B.´ (2025) Spin Chern number in altermagnets. Phys. Rev. B, 111, 085127. https://doi.org/10.1103/PhysRevB.111.085127

Haldane, F. D. M. (1988) Model for a quantum hall effect without landau levels: Condensedmatter realization of the ”parity anomaly”. Phys. Rev. Lett., 61, 2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015

Heesch, H. (1930) Uber die vierdimensionalen gruppen des dreidimensionalen raumes.¨ Zeitschrift fur Kristallographie - Crystalline Materials¨ , 73(1-6), 325–345. https://doi.org/doi:10.1524/zkri.1930.73.1.325

Heesch, H. (1930) Über die vierdimensionalen gruppen des dreidimensionalen raumes. Zeitschrift f¨ur Kristallographie - Crystalline Materials, 73(1-6), 325–345. https://doi.org/doi:10.1524/zkri.1930.73.1.325

Kane, C. L., Mele, E. J. (2005b) Quantum spin hall effect in graphene. Phys. Rev. Lett., 95, 226801. https://doi.org/10.1103/PhysRevLett.95.226801

Karoubi, M. (1970) Sur la K-théorie équivariante. In Séminaire Heidelberg-Saarbrücken-Strasbourg sur la K-théorie (1967/68) (pp. 187–253, Vol. Vol. 136). Springer, Berlin-New York.

Konig, M., Wiedmann, S., Br¨ une, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi,¨ X.-L., Zhang, S.-C. (2007) Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047

Kou, X., Guo, S.-T., Fan, Y., Pan, L., Lang, M., Jiang, Y., Shao, Q., Nie, T., Murata, K., Tang, J., Wang, Y., He, L., Lee, T.-K., Lee, W.-L., Wang, K. L. (2014) Scaleinvariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett., 113, 137201. https://doi.org/10.1103/ PhysRevLett.113.137201

May, J. P. (1996) Equivariant homotopy and cohomology theory (Vol. 91) [With contributions by M. Cole, G. Comezana, S. Costenoble, A. D. Elmendorf, J. P. C. Green-˜ lees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner]. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI.https://doi.org/10.1090/cbms/091

Segal, G. (1968) Equivariant K-theory. Inst. Hautes Etudes Sci. Publ. Math.´ , (34), 129–151. http://www.numdam.org/item?id=PMIHES 1968 34 129 0

Serrano, H. (2025) Magnetic equivariant K-theory. Phd thesis. CINVESTAV, Mexico,´

Shiozaki, K., Sato, M., Gomi, K. (2017) Topological crystalline materials: General formulation, module structure, and wallpaper groups. Phys. Rev. B, 95, 235425. https://doi.org/10.1103/PhysRevB.95.235425

Shiozaki, K., Sato, M., Gomi, K. (2022) Atiyah-hirzebruch spectral sequence in band topology: General formalism and topological invariants for 230 space groups. Phys. Rev. B, 106, 165103. https://doi.org/10.1103/PhysRevB.106.165103

Smejkal, L., González-Hernández, R., Jungwirth, T., Sinova, J.´ (2020) Crystal timereversal symmetry breaking and spontaneous hall effect in collinear antiferromagnets. Science Advances, 6(23), eaaz8809. https://doi.org/10.1126/sciadv.aaz8809

Subnikov,, A. V. (1951) Simmetriya i antisimmetriya konecnyh figur. Izdat. Akad. Nauk SSSR, Moscow.

Thouless, D. J., Kohmoto, M., Nightingale, M. P., den Nijs, M. (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405– 408. https://doi.org/10.1103/PhysRevLett.49.405

Wigner, E. P. (1959) Group theory and its application to the quantum mechanics of atomic spectra (Vol. Vol. 5) [Expanded and improved ed. Translated from the German by J. J. Griffin]. Academic Press, New York-London.

Zou, J.-Y., Fu, B., Shen, S. (2024) Topological properties of c4zt-symmetric semimetals. Communications Physics. https://api.semanticscholar.org/CorpusID:272160798

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales