Abstract
We introduce the magnetic equivariant K-theory groups as the K-theory groups associated to the magnetic groups and their respective magnetic equivariant complex bundles. We restrict the magnetic group to its subgroup of elements that act complex linearly, and we show that this restriction induces a rational isomorphism with the conjugation invariant part of the complex equivariant K-theory of the restricted group. This isomorphism allows us to calculate the torsion free part of the magnetic equivariant K-theory groups reducing it to known calculations in complex equivariant K-theory.
References
Adem, A., Ruan, Y. (2003) Twisted orbifold K-theory. Commun. Math. Phys., 237(3), 533–556. https://doi.org/10.1007/s00220-003-0849-x
Atiyah, M. F., Segal, G. B. (1969) Equivariant K-theory and completion. J. Differential Geometry, 3, 1–18. http://projecteuclid.org/euclid.jdg/1214428815
Atiyah, M. F. (1966) K-theory and reality. Q. J. Math., Oxf. II. Ser., 17, 367–386. https://doi.org/10.1093/qmath/17.1.367
Bellissard, J., van Elst, A., Schulz- Baldes, H. (1994) The noncommutative geometry of the quantum hall effect. Journal of Mathematical Physics, 35(10), 5373–5451. https://doi.org/10.1063/1.530758
Bellissard, J. (1986) K-theory ofC∗-algebras in solid state physics. In Statistical mechanics and field theory: Mathematical aspects (Groningen, 1985) (pp. 99–156, Vol. 257). Springer, Berlin. https://doi.org/10.1007/3-540-16777-3_74
Bernevig, B. A., Zhang, S.-C. (2006) Quantum spin hall effect. Phys. Rev. Lett., 96, 106802. https://doi.org/10.1103/PhysRevLett.96.106802
Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei,P., Wang, L.-L., Ji, Z.-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.-C., He, K., ... Xue, Q.-K. (2013) Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129), 167–170. https://doi.org/10.1126/science.1234414
Day, I. A., Varentcova, A., Varjas, D., Akhmerov, A. R. (2023) Pfaffian invariant identifies magnetic obstructed atomic insulators. SciPost Phys., 15, 114. https://doi.org/10.21468/SciPostPhys.15.3.114
Dupont, J. L. (1969) Symplectic bundles and KR-theory. Math. Scand., 24, 27–30. https://doi.org/10.7146/math.scand.a-10918
Freed, D. S., Moore, G. W. (2013) Twisted equivariant matter. Ann. Henri Poincaré, 14(8), 1927–2023. https://doi.org/10.1007/s00023-013-0236-x
Gibney, E., Castelvecchi, D. (2016) Physics of 2d exotic matter wins nobel. Nature, 538, 7623. https://doi.org/doi.org/10.1038/nature.2016.20722
Gomi, K. (2023) Freed-Moore K-theory. Comm. Anal. Geom., 31(4), 979–1067.
Gonzalez-Hernández, R., Serrano, H., Uribe, B.´ (2025) Spin Chern number in altermagnets. Phys. Rev. B, 111, 085127. https://doi.org/10.1103/PhysRevB.111.085127
Haldane, F. D. M. (1988) Model for a quantum hall effect without landau levels: Condensedmatter realization of the ”parity anomaly”. Phys. Rev. Lett., 61, 2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015
Heesch, H. (1930) Uber die vierdimensionalen gruppen des dreidimensionalen raumes.¨ Zeitschrift fur Kristallographie - Crystalline Materials¨ , 73(1-6), 325–345. https://doi.org/doi:10.1524/zkri.1930.73.1.325
Heesch, H. (1930) Über die vierdimensionalen gruppen des dreidimensionalen raumes. Zeitschrift f¨ur Kristallographie - Crystalline Materials, 73(1-6), 325–345. https://doi.org/doi:10.1524/zkri.1930.73.1.325
Kane, C. L., Mele, E. J. (2005b) Quantum spin hall effect in graphene. Phys. Rev. Lett., 95, 226801. https://doi.org/10.1103/PhysRevLett.95.226801
Karoubi, M. (1970) Sur la K-théorie équivariante. In Séminaire Heidelberg-Saarbrücken-Strasbourg sur la K-théorie (1967/68) (pp. 187–253, Vol. Vol. 136). Springer, Berlin-New York.
Konig, M., Wiedmann, S., Br¨ une, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi,¨ X.-L., Zhang, S.-C. (2007) Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047
Kou, X., Guo, S.-T., Fan, Y., Pan, L., Lang, M., Jiang, Y., Shao, Q., Nie, T., Murata, K., Tang, J., Wang, Y., He, L., Lee, T.-K., Lee, W.-L., Wang, K. L. (2014) Scaleinvariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett., 113, 137201. https://doi.org/10.1103/ PhysRevLett.113.137201
May, J. P. (1996) Equivariant homotopy and cohomology theory (Vol. 91) [With contributions by M. Cole, G. Comezana, S. Costenoble, A. D. Elmendorf, J. P. C. Green-˜ lees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner]. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI.https://doi.org/10.1090/cbms/091
Segal, G. (1968) Equivariant K-theory. Inst. Hautes Etudes Sci. Publ. Math.´ , (34), 129–151. http://www.numdam.org/item?id=PMIHES 1968 34 129 0
Serrano, H. (2025) Magnetic equivariant K-theory. Phd thesis. CINVESTAV, Mexico,´
Shiozaki, K., Sato, M., Gomi, K. (2017) Topological crystalline materials: General formulation, module structure, and wallpaper groups. Phys. Rev. B, 95, 235425. https://doi.org/10.1103/PhysRevB.95.235425
Shiozaki, K., Sato, M., Gomi, K. (2022) Atiyah-hirzebruch spectral sequence in band topology: General formalism and topological invariants for 230 space groups. Phys. Rev. B, 106, 165103. https://doi.org/10.1103/PhysRevB.106.165103
Smejkal, L., González-Hernández, R., Jungwirth, T., Sinova, J.´ (2020) Crystal timereversal symmetry breaking and spontaneous hall effect in collinear antiferromagnets. Science Advances, 6(23), eaaz8809. https://doi.org/10.1126/sciadv.aaz8809
Subnikov,, A. V. (1951) Simmetriya i antisimmetriya konecnyh figur. Izdat. Akad. Nauk SSSR, Moscow.
Thouless, D. J., Kohmoto, M., Nightingale, M. P., den Nijs, M. (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405– 408. https://doi.org/10.1103/PhysRevLett.49.405
Wigner, E. P. (1959) Group theory and its application to the quantum mechanics of atomic spectra (Vol. Vol. 5) [Expanded and improved ed. Translated from the German by J. J. Griffin]. Academic Press, New York-London.
Zou, J.-Y., Fu, B., Shen, S. (2024) Topological properties of c4zt-symmetric semimetals. Communications Physics. https://api.semanticscholar.org/CorpusID:272160798

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales