UN ESTIMADOR DE DOS ETAPAS DE MODELOS DE CURVAS DE CRECIMIENTO LINEALES DE CURVAS MULTIVARIADAS DE CRECIMIENTO
PDF (English)

Cómo citar

Beganu, G. (2023). UN ESTIMADOR DE DOS ETAPAS DE MODELOS DE CURVAS DE CRECIMIENTO LINEALES DE CURVAS MULTIVARIADAS DE CRECIMIENTO. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 30(117), 549–550. https://doi.org/10.18257/raccefyn.30(117).2006.2282

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

A family of multivariate linear growth curve models with random effects is considered. The purpose of this article is to describe a computational method required for the estimation of individual regression coefficients when the covariance components are known or unknown. In the second case, the covariance matrix of the data will be estimated by a generalized version of the Henderson method III using the orthogonal projections onto linear subspaces corresponding to the model, and a two-stage estimator of individual regression coefficients is obtained. The estimation of fixed and random effects is presented in a Bayesian approach.

https://doi.org/10.18257/raccefyn.30(117).2006.2282

Palabras clave

Estimador empírico de Bayes estimado | estimador cuadrático insesgado | proyección ortogonal
PDF (English)

Citas

Baksalary, J.K. and Kala, R. (1979), Criteria for estimability in multivariate linear models, Math. Operationsforsch. Statist. ser. Statist., 7, 5-9.

Beganu, G. (1987), Estimation of regression parameters in a covariance linear model, Stud. Cerc. Mat., 39, 3-10.

Beganu, G. (1987), Estimation of covariance components in linear models. A coordinate-free approach, Stud. Cerc. Mat., 39, 228-233.

Beganu, G. (2003), The existence conditions of the best linear unbiased estimators of the fixed factor effects, Econom. Cumput. Econom. Cybernet. Studies and Research, 36, 95-102.

Beganu, G. Quadratic estimator of covariance components in a multivariate mixed linear model, Statistical Methods and Applications (to appear).

Beganu, G. (2005), On Gram-Schmidt orthogonalizing process of design matrices in linear models as estimating procedure of covariance components, Rev. R. Acad. Cien. Serie A. Mat., 99, 187-194.

Chen, Z. and Dunson, D. B. (2003), Random effects selection in linear mixed models, Biometrics, 59, 762-771.

De Gruttola, V.; Ware, J. H. and Louis, T.A. (1987), Influence analysis of generalized least squares estimators, J. Amer. Statist. Assoc., 82, 911-917.

Dempster, A. P.; Laird, N. M. and Rubin, D. B. (1977), Maximum likelihood from incomplete data via the EM algorithm, J. Royal Statist. Soc., Ser. B, 39, 1-38.

Dempster A. P.; Rubin, D. B. and Tsutakawa, R. K. (1981), Estimation in covariance components models, J. Amer. Statist. Assoc., 76, 341-353.

Eaton, M. L. (1970). Gauss-Markov estimation for multivariate linear models: A coordinate free approach, Ann. Math. Statist., 41, 528-538.

Halmos, P. R. (1958), Finite Dimensional Vector Spaces, 2nd ed., Van Nostrand, Princeton, New Jersey.

Harville, D. A. (1976), Extension of the Gauss-Markov theorem to include the estimation of random effects, Ann. Statist, 4, 384-305.

Harville, D. A. (1977), Maximum likelihood approaches to variance component estimation and to related problems, J. Amer. Statist. Assoc., 72, 320-340.

Henderson, C. R. (1953), Estimation of variance and covariance components, Biometrics, 9, 226-252.

Khan, S. and Powell J.L. (2001), Two-step estimation of semiparametric censored regression models, J. Econometrics, 103, 73-110.

Khuri, A. I. (1992), Response surface models with random block effects, Technometrics, 34, 26-37.

Laird, N. M. and Ware, J. H. (1982), Random-effects models for longitudinal data, Biometrics, 38, 963-974.

Lange, N. and Laird, N. M. (1989). The effect of covariance structure on variance estimation in balanced growth-curve models with random parameters, J. Amer. Statist. Assoc., 84, 241-247.

Morris, C.N. (1983), Parametric empirical Bayes inference: Theory and applications, J. Amer. Statist. Assoc., 78, 47-55.

Neudecker, N. (1990), The variance matrix of a matrix quadratic form under normality assumptions. A derivation based on its moment-generating function, Math. Operationsforsch. Statist., ser. Statistics, 3, 455-459.

Potthoff, R. F. and Roy, S. N. (1964), A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika, 51, 313-326.

Prassad, N. G. N. and Rao, J. N. K. (1990), The estimation of the mean squared error of small-area estimators, J. Amer. Statist. Assoc., 85, 163-171.

Reinsel, G. (1982), Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure, J. Amer. Statist. Assoc., 77, 190-195.

Reinsel, G. (1984), Estimation and prediction in a multivariate random effects generalized linear model, J. Amer. Statist. Assoc., 79, 406-414.

Reinsel, G. (1985), Mean squared error properties of empirical Bayes estimators in a multivariate random effects general linear model, J. Amer. Statist. Assoc., 80, 642-650.

Sala-Martin, X., Doppelhofer, G. and Miller, R. I. (2004), Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach, American Economic Review, 94, 813-835.

Smouse E. P. (1984), A note on Bayesian least squares inference for finite population models, J. Amer. Statist. Assoc., 70, 390-392.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0