Resumen
El poli(ácido láctico) (PLA) es la alternativa biodegradable más prometedora para reemplazar los polímeros convencionales de base petroquímica en la fabricación de materiales de alto rendimiento.El objetivo de esta revisión es reportar los principales métodos de obtención de ácido poliláctico y discutir brevemente su funcionalización y aplicación en el campo de la liberación controlada de fármacos. Se hizo una búsqueda bibliográfica en bases de datos científicas y se muestran los resultados de algunas investigaciones de nuestro Grupo de Ciencia de los Materiales. Las modificaciones de PLA más utilizadas para su aplicación en los sistemas de administración de fármacos son la funcionalización con ácido glicólico (GA) y el etilenglicol (PEG) por copolimerización o mezcla, en la que el uso de compatibilizadores es importante para lograr una buena adhesión. Se discute la vectorización pasiva y activa, cuya elección depende del tamaño de la nanopartícula y del tipo de enfermedad a tratar.
Palabras clave
Citas
Ahmed, F., Discher, D. E. (2004). Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. Journal of Controlled Release, 96, 37-53.https://doi.org/http://dx.doi.org/10.1016/j.jconrel.2003.12.021
Ali, W., Ali, H., Gillani, S., Zinck, P., Souissi, S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 21, 1761-1786. https://doi.org/10.1007/s10311-023-01564-8
Auras, R. A., Lim, L. T., Selke, S. E. M., Tsuji, H. (2011). Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley. https://books.google.com.co/booksid=UBUdo_mbr6AC
Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., Bikiaris, D. N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11), 1822. https://doi.org/10.3390/polym13111822
Betancourt, T., Byrne, J. D., Sunaryo, N., Crowder, S. W., Kadapakkam, M., Patel, S., Casciato,S., Brannon-Peppas, L. (2009). PEGylation strategies for active targeting of PLA/PLGA nanoparticles. Journal of Biomedical Materials Research, Part A, 91(1), 263-276. https://doi.org/10.1002/jbm.a.32247
Casalini, T. (2017). 3 - Bioresorbability of polymers: Chemistry, mechanisms, and modeling. In G. Perale & J. B. T.-B. P. for B. A. Hilborn (Eds.), Bioresorbable Polymers for Biomedical Applications (pp. 65–83). Woodhead Publishing. https://doi.org/doi.org/10.1016/B978-0-08-100262-9.00003-3
Casalini, T., Rossi, F., Castrovinci, A., Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7, 259. https://doi.org/10.3389/fbioe.2019.00259
Coudane, J., Van Den Berghe, H., Mouton, J., Garric, X. Nottelet, B. (2022). Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules, 27(13), 4135. https://doi.org/10.3390/molecules27134135
Cunha, B., Bahú, J., Xavier, L., Crivellin S, de Souza, S., Lodi, L., Jardini, A., Filho, R., Schiavon, M., Concha, V., Severino, P., Souto, E. (2022). Lactide: Production Routes, Properties, and Applications. Bioengineering, 7(9), 164. https://doi.org/10.3390/bioengineering9040164
DeStefano, V., Khan, S., Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76-87. https://doi.org/10.1016/j.engreg.2020.08.002
Dijkstra, P. J., Du, H., Feijen, J. (2011). Single site catalysts for stereoselective ring-opening polymerization of lactides. Polymer Chemistry, 2(3), 520-527. https://doi.org/10.1039/C0PY00204F
Fukushima, K., Nozaki, K. (2020). Organocatalysis: A Paradigm Shift in the Synthesis of Aliphatic Polyesters and Polycarbonates. Macromolecules, 53(13), 5018-5022. https://doi.org/10.1021/acs.macromol.0c00582
Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 1-24. https://doi.org/10.3389/fphar.2021.601626
Garlotta, D. (2001). A Literature Review of Poly(Lactic Acid). Journal Polymers Environmental, 9, 63-84. https://doi.org/10.1023/a:1020200822435
Harris, J.M. (Editor). (1992). Poly(Ethylene Glycol) Chemistry. Biotechnical and Biomedical Applications. Springer New York, NY. https://doi.org/https://doi.org/10.1007/978-1-4899-0703-5
Hoyos-Ceballos, G. P., Ruozi, B., Ottonelli, I., Da Ros, F., Vandelli, M. A., Forni, F., Daini, E., Vilella, A., Zoli, M., Tosi, G., Duskey, J. T., López Osorio, B. L. (2020). PLGA-PEG-Ang–2 nanoparticles for blood–brain barrier crossing: Proof-of-concept study. Pharmaceutics, 12 (1), 111. https://doi.org/10.3390/pharmaceutics12010072
Hoyos-Ceballos, G. P., Sánchez-Giraldo, V., Mendivil-Perez, M., Jiménez-Del Río, M., Sierra-García, L., Vélez-Pardo, C., López-Osorio, B. L. (2018). Design of epigallocatechin gallate loaded PLGA/PF127 nanoparticles and their effect upon an oxidative stress model. Journal of Drug Delivery Science and Technology, 48, 152–160. https://doi.org/10.1016/j.jddst.2018.09.010
Hu, Y., Daoud, W. A., Cheuk, K. K. L., Lin, C. S. K. (2016). Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid). Materials, 9(3), 133. https://doi.org/10.3390/ma9030133
Jem, K. J., Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60-70. https://doi.org/10.1016/j.aiepr.2020.01.002
Khalid, M., El-Sawy, H. S. (2017). Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics, 528, 675-691. https://doi: 10.1016/j.ijpharm.2017.06.052
Kumari, A., Yadav, S. K., Yadav, S. C. (2010). Biodegradable polymeric nanoparticles-based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1-18. https://doi:10.1016/j.colsurfb.2009.09.00
Li, X., Lin, Y., Liu, M., Meng, L., Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477
Li, Y., Qiang, Z., Chen, X., Ren, J. (2019). Understanding thermal decomposition kinetics of flameretardant thermoset polylactic acid. RSC Advances, 9(6), 3128-3139. https://doi.org/10.1039/C8RA08770A
Lohmeijer, B. G. G., Pratt, R. C., Leibfarth, F., Logan, J. W., Long, D. A., Dove, A. P., Nederberg, F., Choi, J., Wade, C., Waymouth, R. M., Hedrick, J. L. (2006). Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 39 (25), 8574-8583. https://doi.org/10.1021/ma0619381
Lu, Y., Cheng, D., Niu, B., Wang, X., Wu, X., Wang, A. (2023). Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly(Lactic-co-Glycolic Acid) Based Biodegradable Materials in Biomedical Research. Pharmaceuticals, 16, 454. https://doi.org/10.3390/ph16030454
Montané, X., Montornes, J. M., Nogalska, A., Olkiewicz, M., Giamberini, M., Garcia-Valls, R., Badia-Fabregat, M., Jubany, I., Tylkowski, B. (2020). Synthesis and synthetic mechanism of Polylactic acid. Physical Sciences Reviews, 5(12), 20190102. https://doi.org/doi:10.1515/psr-2019-0102
Nyamweya, N. N. (2021). Applications of polymer blends in drug delivery. Future Journal of Pharmaceutical Sciences, 7(1), 1-15. https://doi.org/10.1186/s43094-020-00167-2
Orozco, V.H., Palacio, J., Sierra, J., López, B. L. (2013). Increased covalent conjugation of a model antigen to poly(lactic acid)-g-maleic anhydride nanoparticles compared to bare poly(lactic acid) nanoparticles. Colloid and Polymer Science, 291(12), 2775-2781. https://doi.org/10.1007/s00396-013-3023-9
Orozco, V. H., Vargas, A. F., López, B. L. (2007). Study of the Polymerization Kinetic of Lactic Acid. Macromolecular Symposia, 258, 45-52. https://doi.org/10.1002/masy.200751206
Palacio, J., Agudelo, N. A., López, B. L. (2016a). PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Current Opinion in Chemical Engineering, 11, 14-19. https://doi.org/10.1016/j.coche.2015.11.006
Palacio, J., Agudelo, N. A., López, B. L. (2016b). PLA/Pluronic® nanoparticles as potential oral delivery systems: Preparation, colloidal and chemical stability, and loading capacity. Journal of Applied Polymer Science, 133(33), 43828. https://doi.org/10.1002/app.43828
Palacio, J., Orozco, V. H., López, B. L. (2011). Effect of the molecular weight on the physicochemical properties of poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption. Journal of the Brazilian Chemical Society, 22(12), 2304-2311.
Park, T. G., Cohen, S., Langer, R. (1992). Poly(L-lactic acid)/Pluronic blends: characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrixes. Macromolecules, 25, 116-122. https://doi.org/10.1021/ma00027a019
Perry, J. L., Reuter, K. G., Kai, M. P., Herlihy, K. P., Jones, S. W., Luft, J. C., Napier, M., Bear, J. E., DeSimone, J. M. (2012). PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Letters, 12(10), 5304-5310. https://doi.org/10.1021/nl302638g
Pinto Reis, C., Neufeld, R. J., Ribeiro, A. J., Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine Nanotechnology Biology Medicine, 2, 8-21. https://doi.org/10.1016/j.nano.2005.12.003
Pourtalebi Jahromi, L., Ghazali, M., Ashrafi, H., Azadi, A. (2020). A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon, 6(2), 03451. https://doi.org/10.1016/j.heliyon.2020.e03451
Puthumana, M., Santhana Gopala Krishnan, P., Nayak, S. K. (2020). Chemical modifications of PLA through copolymerization. International Journal of Polymer Analysis and Characterization, 25(8), 634-648. https://doi.org/10.1080/1023666X.2020.1830650
Rasal, R. M., Janorkar, A. V., Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
Riley, T., Govender, T., Stolnik, S., Xiong, C. D., Garnett, M. C., Illum, L., Davis, S. S. (1999). Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids and Surfaces B: Biointerfaces, 16, 147-159. https://doi.org/10.1016/S0927-7765(99)00066-1
Roberto, S., Andrea, M., Fiorenza, S., Fortunato G. E., Marco, M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11 (4), 651. https://doi.org/10.3390/polym11040651
Singh, R., Sharma, R., Shaqib, M., Sarkar, A., Chauhan, K. D. (2021). Chapter 10 - Biodegradable polymers as packaging materials (S. Thomas, S. Gopi, & A.B. T.-B. and their I. A. Amalraj, Eds.; pp. 245-259). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819240-5.00010-9
Singhvi, M. S., Zinjarde, S. S., Gokhale, D. V. (2019). Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 127(6), 1612-1626. https://doi.org/10.1111/jam.14290
Tabatabaei Mirakabad, F. S., Nejati-Koshki, K., Akbarzadeh, A., Yamchi, M. R., Milani, M., Zarghami, N., Zeighamian, V., Rahimzadeh, A., Alimohammadi, S., Hanifehpour, Y., Joo, S. W. (2014). PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific Journal of Cancer Prevention, 15(2), 517-535. https://doi.org/10.7314/apjcp.2014.15.2.517
Tang, X., Pikal, M. (2004). Design of Freeze-Drying Processes for Pharmaceuticals:Practical Advice. Pharmaceutical Research, 21, 191-200. https://doi.org/10.1023/b:pham.0000016234.73023.75
Tobío, M., Sánchez, A., Vila, A., Soriano, I., Evora, C., Vila-Jato, J., Alonso, M. (2000). The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces. B, Biointerfaces, 18(3-4), 315-323.https://doi.org/10.1016/s0927-7765(99)00157-5
Vllasaliu, D., Fowler, R., Stolnik, S. (2014). PEGylated nanomedicines: recent progress and remaining concerns. Expert Opinion on Drug Delivery, 11(1), 139-154. https://doi.org/10.1517/17425247.2014.866651
Xiao, R. Z., Zeng, Z. W., Zhou, G. L., Wang, J. J., Li, F. Z., Wang, A. M. (2010). Recent advances in PEG-PLA block copolymer nanoparticles. International Journal of Nanomedicine, 5, 1057-1065. https://doi.org/10.2147/IJN.S14912
Yang, L., El Ghzaoui, A., Li, S. (2010). In vitro degradation behavior of poly(lactide)-poly(ethylene glycol) block copolymer micelles in aqueous solution. International Journal of Pharmaceutics, 400 (1-2), 96-103. https://doi.org/10.1016/j.ijpharm.2010.08.037
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales