Resumen
El uso de residuos de borra de café para la obtención de carbones activados mediante carbonización hidrotérmica se ha abordado de forma poco sistemática en la literatura, lo que sumado a la necesidad de mejorar los sistemas de almacenamiento de energía, exige la realización de estudios sistemáticos de estos procesos. En el presente trabajo se obtuvieron carbones activados con porosidad jerarquizada a partir de biomasa por medio de carbonización hidrotérmica y activaciones químicas. Se analizó el efecto del tiempo y la temperatura de la carbonización hidrotérmica de la borra de café, con el fin de obtener un alto grado de carbonización y mejores rendimientos de reacción. En cuanto a la porosidad, se utilizaron tres agentes directores de estructura para obtener una distribución de poros jerarquizada. Con respecto al desarrollo de los materiales, el análisis termogravimétrico y el elemental confirmaron la obtención de un material mucho más carbonizado con la carbonización hidrotérmica a 250 °C durante 6 h, en tanto que a 200 °C durante 6 h se logró un mayor rendimiento de reacción. Los carbones activados se caracterizaron utilizando isotermas y micrografías de microscopía electrónica de barrido (MEB) para el análisis de la porosidad y el área superficial, y se comprobó que todos los materiales sintetizados obtuvieron una distribución jerárquica de poros. Asimismo, se evaluó el comportamiento de los materiales como electrodos para supercondensadores, evidenciándose una mejor capacitancia específica con el carbón obtenido por activación con hidróxido de potasio (KOH).
Palabras clave
Citas
Adan-mas, A., Alcaraz, L., Arévalo-cid, P., López-Gómez, F. A., Montemor, F. (2021). Coffeederived activated carbon from second biowaste for supercapacitor applications. Waste Management. 120: 280-289. https://doi.org/10.1016/j.wasman.2020.11.043
Antonietti, M., Wu, L., Yu, S.-H., Wang, K., Hu, B., Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials. 22(7): 813-828. https://doi.org/10.1002/adma.200902812
Axelsson, L., Franzén, M., Ostwald, M., Berndes, G., Lakshmi, G., Ravindranath, N. H. (2012).Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining. 6 (3): 246-256. https://doi.org/10.1002/bbb
Ballesteros, L. F., Teixeira, J. A., Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology.7 (12): 3493-3503. https://doi.org/10.1007/s11947-014-1349-z
Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., Belver, C. (2020). Review on Activated Carbons by Chemical Activation with FeCl3. C — Journal of Carbon Research. 6(2): 21. https://doi.org/10.3390/c6020021
Berrueta, A. & Ursúa, A. (2019). Supercapacitors : Electrical Characteristics, Modeling, Applications, and Future Trends. IEEE Access. 7: 50869-50896. https://doi.org/10.1109/ACCESS.2019.2908558
Blinová, L., Sirotiak, M., Bartošová, A., Soldán, M. (2017). Review: tilization of waste from coffee production. Faculty of Materials Science and Technology in Trnava. 25 (40): 91-101.https://doi.org/10.1515/rput-2017-0011
Burnham, A. K. (2018). Van Krevelen Diagrams. In: Sorkhabi R. (eds) Encyclopedia of Petroleum Geoscience. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02330-4_67-1
Calvo, E. G., Menéndez, J. A., Arenillas, A. (2013). Microporous and mesoporous materials microwave synthesis of micro-mesoporous activated carbon xerogels for high performance supercapacitors. Microporous And Mesoporous Materials. 168: 206-212. https://doi.org/10.1016/j.micromeso.2012.10.008
Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., Dave Oomah, B. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology. 45 (1): 24-36. https://doi.org/10.1016/j.tifs.2015.04.012
Chen, C., Sun, Æ. X., Jiang, Æ. X., Niu, D., Yu, Æ. A., Liu, Æ. Z., Guang, Æ. J. (2009). A Two-Step Hydrothermal Synthesis Approach to Monodispersed Colloidal Carbon Spheres.Nanoscales Res Lett. 4: 971-976. https://doi.org/10.1007/s11671-009-9343-5
Dai, C., Wan, J., Yang, J., Qu, S., Jin, T., Ma, F., Shao, J. (2018). H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors. Applied Surface Science. 444: 105-117.https://doi.org/10.1016/j.apsusc.2018.02.261
Donar, Y. O., Çaǧlar, E., Sinaǧ, A. (2016). Preparation and characterization of agricultural waste biomass based hydrochars. Fuel. 183: 366-372. https://doi.org/10.1016/j.fuel.2016.06.108
Elaiyappillai, E., Srinivasan, R., Johnbosco, Y., Devakumar, P., Murugesan, K., Kesavan, K., Johnson, P. M. (2019). Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science. 486: 527-538. https://doi.org/10.1016/j.apsusc.2019.05.004
Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K. (1999). Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, Inc., p. 646.
Gao, Y., Yue, Q., Gao, B., Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment. 746. https://doi.org/10.1016/j.scitotenv.2020.141094
Ghosh, D., Giri, S., Basu, T., Mandal, M., Das, C. K. (2014). α MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Transactions. 43:11067-11076. https://doi.org/10.1039/c4dt00672k
Simon, P. & Gogotsi, Y. (2017). Materials for electrochemical capacitors. Nature materials. 7: 845-54. https://doi.org/10.1038/nmat2297
Guerrera, J. V., Burrow, J. N., Eichler, J. E., Rahman, M. Z., Namireddy, M. V., Friedman, K. A., Coffman, S. S., Calabro, D. C., Mullins, C. B., Mullins, C. B. (2020). Evaluation of Two Potassium-Based Activation Agents for the Production of Oxygen- A nd Nitrogen- Doped Porous Carbons. Energy and Fuels. 34 (5): 6101-6112. https://doi.org/10.1021/acs.energyfuels.0c00427
He, X., Li, R., Qiu, J., Xie, K., Ling, P. (2012). Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon. 50 (13): 4911-4921. https://doi.org/10.1016/j.carbon.2012.06.020
International Energy Agency-IEA. (2019). World Energy Outlook 2019. World Energy Outlook Sereies. www.iea.org/weo
Kalderis, D., Kotti, M. S., Méndez, A., Gascó, G. (2014). Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth. 5 (1): 477-483. https://doi.org/10.5194/se-5-477-2014
Kambo, H. S. & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews. 45: 359-378. https://doi.org/10.1016/j.rser.2015.01.050
Kang, S., Li, X., Fan, J., Chang, J. (2012). Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Industrial and Engineering Chemistry Research. 51 (26): 9023-9031. https://doi.org/10.1021/ie300565d
Kannan, S., Gariepy, Y., Raghavan, G. S. V. (2017). Optimization and Characterization of Hydrochar Derived from Shrimp Waste. Energy and Fuels. 31 (4): 4068-4077. https://doi.org/10.1021/acs.energyfuels.7b00093
Kar, K. K. (2020). Handbook of nanocomposite supercapacitor materials I (K. K. Kar (ed.)). Springer. https://doi.org/10.1007/978-3-030-43009-2
Kruse, A. & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant. 2. Degradation reactions. Journal of Supercritical Fluids. 41 (3): 361-379. https://doi.org/10.1016/j.supflu.2006.12.006
Laurio, M. V. O. & Slater, C. S. (2020). Process scale-up, economic, environmental assessment of vibratory nanofiltration of coffee extracts for soluble coffee production process intensification. Clean Technologies and Environmental Policy. 22 (9): 1891-1908. https://doi.org/10.1007/s10098-020-01931-x
Li, S., Han, K., Li, J., Li, M., Lu, C. (2017). Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials. 243: 291-300. https://doi.org/10.1016/j.micromeso.2017.02.052
Li, Z. & Chen, J. (2008). An impedance-based approach to predict the state-of-charge for carbonbased supercapacitors. Microelectronic Engineering. 85 (7): 1549-1554. https://doi.org/10.1016/j.mee.2008.02.016
Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., Fühner, C., Bens, O., Kern, J., Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2 (1): 71-106. https://doi.org/10.4155/bfs.10.81
Liu, H., Cui, W., Jin, L., Wang, C., Xia, Y. (2009). Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry. 19: 3661-3667. https://doi.org/10.1039/b819820a
Machnikowski, J. & Lorenc-Grabowska, E. (2005). Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50: 1197-1206. https://doi.org/10.1016/j.electacta.2004.07.045
Mastragostino, M., Soavi, F., Arbizzani, C. (2002). Electrochemical Supercapacitors. En: van Schalkwijk W.A., Scrosati B. (eds). Advances in Lithium-Ion Batteries. Springer, Boston,MA. p. 481-505. https://doi.org/10.1007/0-306-47508-1_17
Mukaida, M., Watanabe, Y., Sugano, K., Terada, K. (2015). Identification and physicochemical characterization of caffeine-citric acid co-crystal polymorphs. European Journal of Pharmaceutical Sciences. 79: 61-66. https://doi.org/10.1016/j.ejps.2015.09.002
Oliveira, L. C. A., Pereira, E., Guimaraes, I. R., Vallone, A., Pereira, M., Mesquita, J. P., Sapag, K. (2009). Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials. 165 (1-3): 87-94. https://doi.org/10.1016/j.jhazmat.2008.09.064
Rincón, J. M., Rincón, S., Guevara, P., Ballén, D., Morales, J. C., Monroy, N. (2015). Producción de carbón activado mediante métodos físicos a partir de carbón de El Cerrejón y su aplicación en el tratamiento de aguas residuales provenientes de tintorerías. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 39 (51): 171. https://doi.org/10.18257/raccefyn.138
Sevilla, M. & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 47 (9): 2281-2289. https://doi.org/10.1016/j.carbon.2009.04.026
Sevilla, M., Al-Jumialy, A. S. M., Fuertes, A. B., Mokaya, R. (2018). Optimization of the PoreStructure of Biomass-Based Carbons in Relation to Their Use for CO2Capture under Lowand High-Pressure Regimes. ACS Applied Materials and Interfaces. 10 (2): 1623-1633. https://doi.org/10.1021/acsami.7b10433
Subramanian, V., Luo, C., Stephan, A. M., Nahm, K. S., Thomas, S., Wei, B. (2007).Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C. 111 (20): 7527-7531. https://doi.org/10.1021/jp067009t
Vardon, D. R., Moser, B. R., Zheng, W., Witkin, K., Evangelista, R. L., Strathmann, T. J., Rajagopalan, K., Sharma, B. K. (2013). Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry and Engineering. 1 (10): 1286-1294. https://doi.org/10.1021/sc400145w
Verhagen, S. (2018). Improving the Value of Spent Coffee Grounds by Converting Carbohydrates into Fermentable Sugars Improving the Value of Spent Coffee Grounds by Converting Carbohydrates into Fermentable Sugars. September 2017. https://edepot.wur.nl/441154
Vinayagam, M., Suresh, R., Sivasamy, A., Lucia, A., Barros, F. De. (2020). Biomass and Bioenergy Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass and Bioenergy. 143: 105838. https://doi.org/10.1016/j.biombioe.2020.105838
Wu, F., Tseng, R., Hu, C., Wang, C. (2005). Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources. 144: 302-309. https://doi.org/10.1016/j.jpowsour.2004.12.020
Yakaboylu, G. A., Jiang, C., Yumak, T., Zondlo, J. W., Wang, J., Sabolsky, E. M. (2021). Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renewable Energy. 163: 276-287. https://doi.org/10.1016/j.renene.2020.08.092
Yang, F., Wang, D., Zhao, Y., Tsui, K. L., Bae, S. J. (2018). A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy. 145: 486-495. https://doi.org/10.1016/j.energy.2017.12.144
Yun, Y. S., Park, M. H., Hong, S. J., Lee, M. E., Park, Y. W., Jin, H. J. (2015). Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Applied Materials and Interfaces. 7 (6): 3684-3690. https://doi.org/10.1021/am5081919
Zhang, G., Chen, Y., Chen, Y., Guo, H. (2018). Activated biomass carbon made from bamboo as electrode material for supercapacitors. Materials Research Bulletin, 102: 391-398. https://doi.org/10.1016/j.materresbull.2018.03.006
Zhang, M., He, L., Shi, T., Zha, R. (2018). Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. In Chemistry of Materials. 30: 7391-7412. American Chemical Society. https://doi.org/10.1021/acs.chemmater.8b03345
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales