Resumen
Películas delgadas de ZrTiSiNiN fueron depositadas sobre sustratos de vidrio y silicio mediante co-sputtering reactivo con magnetrón usando blancos de Ti5Si2, Zr. En esta investigación se varío el contenido de Ni en los recubrimientos mediante la adición de cubos de Ni ubicados sobre el blanco de Zr. La morfología superficial, la estructura cristalina y el espesor de las películas fueron evaluadas mediante microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) e interferometría respectivamente. La resistividad eléctrica se midió mediante el método de cuatro puntas y sus propiedades ópticas se caracterizaron por espectroscopía ultravioleta / visible (UV/Vis). Con base en los resultados de XRD se observó que el Níquel actúa como refinador de grano al lograr disminuir el tamaño de cristalito de 27 nm hasta 15 nm cuando la concentración de Níquel aumenta de 0 at% a 6,8 at%. Tanto la resistividad eléctrica y el “band gap” óptico de los recubrimientos aumentaron con la disminución del tamaño del cristalito como resultado del aumento de la densidad de límites de grano y del efecto de confinamiento cuántico.
Citas
Akbari, A., Riviere, J. P., Templier, C., & Le Bourhis, E. (2006). Structural and mechanical properties of IBAD deposited nanocomposite Ti-Ni-N coatings. Surface and Coatings Technology, 200 (22-23 SPEC. ISS.), 6298-6302. https://doi.org/10.1016/j.surfcoat.2005.11.046
Avinash, B. S., Chaturmukha, V. S., Jayanna, H. S., Naveen, C. S., Rajeeva, M. P., Harish, B. M., … Lamani, A. R. (2016). Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial (p. 20426). https://doi.org/10.1063/1.4946477
Belov, D. S., Blinkov, I. V., & Volkhonskii, A. O. (2014). The effect of Cu and Ni on the nanostructure and properties
of arc-PVD coatings based on titanium nitride. Surface and Coatings Technology. 260: 186-197. https://doi.org/10.1016/J.SURFCOAT.2014.09.069
Borja-Goyeneche, E. N., & Olaya-Florez, J. J. (2018). A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering. DYNA. 85 (207): 192-197. https://doi.org 10.15446dyna.v85n207.73304
Chinsakolthanakorn, S., Buranawong, A., Witit-Anun, N., Chaiyakun, S., & Limsuwan, P. (2012). Characterization of nanostructured TiZrN thin films deposited by reactive DC magnetron co-sputtering. Procedia Engineering. 32:571-576. https://doi.org/10.1016/j.proeng.2012.01.1310
Crone, W. C. (2008). A Brief Introduction to MEMS and NEMS. In Springer-Verlag (Ed.), Handbook of Experimental Solid Mechanics. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3275&rep=rep1& ype=pdf
Ebrahimi, F. (2012). Nanocomposites New Trends and Developments. https://doi.org/10.5772/3389
Jain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films. 548: 241-246. https://doi.org/10.1016/j.tsf.2013.09.089
Kaliaraj, G. S., Vishwakarma, V., Ramadoss, A., Ramachandran, D., & Rabel, A. M. (2015). Corrosion, haemocompatibility and bacterial adhesion behavior of TiZrN-coated 316L SS for bioimplants. Bulletin of Materials Science. 38(4): 951-955. https://doi.org/10.1007/s12034-015-0949-1
Kirik, G. V., Kozak, C., & Opielak, M. (2012). Protective coatings based on Zr-Ti-Si-N their physical and mechanical properties and phase composition. Przeglad Elektrotechniczny. 88 (10 A): 319-321. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84867220104&partnerID=tZOtx3y1
Lee, C. H., Guo, F. G., & Chu, C. C. (2012). The Thickness Dependent of Optical Properties, Resistance, Strain and Morphology of Mo Thin Films for The Back Contact of CIGS Solar Cells. Chinese Journal of Physics. 50 (2):311-321.
Lin, Y.-W., Huang, J.-H., & Yu, G.-P. (2010). Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering. Thin Solid Films. 518 (FEBRUARY 2005): 7308-7311. https://doi.org/10.1016/j.tsf.2010.04.099
Lin, Y.-W., Lu, C.-W., Yu, G.-P., & Huang, J.-H. (2016). Structure and Properties of Nanocrystalline (TiZr) x N 1− x Thin Films Deposited by DC Unbalanced Magnetron Sputtering. Journal of Nanomaterials. 2016: 1-12. https://doi.org/10.1155/2016/2982184
Lind, H., Forsén, R., Alling, B., Ghafoor, N., Tasnádi, F., Johansson, M. P., … Odén, M. (2011). Improving thermal stability of hard coating films via a concept of multi-component alloying. Applied Physics Letters. 99 (9): 91903. https://doi.org/10.1063/1.3631672
Lindahl, E., Ottosson, M., & Carlsson, J. O. (2018). Doping of metastable Cu3N at different Ni concentrations: Growth, crystallographic sites and resistivity. Thin Solid Films. 647 (June 2017): 1-8. https://doi.org/10.1016j.tsf.2017.12.010
Marom, H., Ritterband, M., & Eizenberg, M. (2006). The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films. Thin Solid Films. 510 (1-2): 62-67. https://doi.org/10.1016j.tsf.2005.12.155
Mathew, S., Menon, C. S., & Sudarsanakumar, C. (2008). Effect of thickness on the absorption spectra of GaPcCl, SnPcO and AlPcOH thin films. Optoelectronics and Advanced Materials, Rapid Communications. 2 (6): 349-352.
Mayrhofer, P. H., Mitterer, C., Hultman, L., & Clemens, H. (2006, November 1). Microstructural design of hard coatings. Progress in Materials Science. Pergamon. https://doi.org/10.1016/j.pmatsci.2006.02.002
Musil, J., Zeman, P., & Baroch, P. (2014). Hard Nanocomposite Coatings. Comprehensive Materials Processing (Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-08-096532-1.00416-7
Panjan, P., Čekada, M., Panjan, M., Kek-Merl, D., Zupanič, F., Čurković, L., & Paskvale, S. (2012). Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum. 86 (6): 794-798. https://doi.org/10.1016/j.vacuum.2011.07.013
Pilloud, D., Dehlinger, A. S., Pierson, J. F., Roman, A., & Pichon, L. (2003). Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics. Surface and Coatings Technology. 174–175: 720-724. https://doi.org/10.1016/S0257-8972
Pilloud, D., Pierson, J. F., & Pichon, L. (2006). Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 131 (1–3): 36-39. https://doi.org/10.1016/j.mseb.2006.03.017
Pogrebnjak, A. D., Shpak, A. P., Beresnev, V. M., Kolesnikov, D. A., Kunitskii, Y. A., Sobol, O. V., … Grudnitskii, V. V. (2012). Effect of Thermal Annealing in Vacuum and in Air on Nanograin Sizes in Hard and Superhard Coatings Zr–Ti–Si–N. Journal of Nanoscience and Nanotechnology. 12 (12): 9213-9219. https://doi.org/10.1166/jnn.2012.6777
Ramana, C. V., Smith, R. J., & Hussain, O. M. (2003). Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Physica Status Solidi (A) Applied Research. 199 (1): 5-7. https://doi.org/10.1002/pssa.200309009
Saladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581:25-31. https://doi.org/10.1016/j.tsf.2014.11.020
Saladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581:25-31. https://doi.org/10.1016/j.tsf.2014.11.020
Sandu, C. S., Medjani, F., & Sanjinés, R. (2007). OPTICAL AND ELECTRICAL PROPERTIES OF SPUTTERED Zr-Si-N THIN FILMS: FROM SOLID SOLUTION TO NANOCOMPOSITE. Rev.Adv.Mater.Sci (Vol. 15). Retrieved from http://phys.mech.nw.ru/e-journals/RAMS/no_31507/sandu.pdf
Sangiovanni, D. G. (2013). Transition Metal Nitrides Alloy Design and Surface Transport Properties using Ab--initio and Classical Computational Methods. Linköping University. Retrieved from https://liu.diva-portal.org/smash/get/diva2:617410/FULLTEXT01.pdf
Sherrer, P. (1918). Estimation of size and internal structural of colloidal particles by mean of Rontgen rays. Gottinger Nachrichten Math. Phys. 2: 98-100.
Singh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science. 12(4): 470-475. https://doi.org/10.1080/16583655.2018.1473946
Smith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research. 43 (2): 190-200. https://doi.org/10.1021/ar9001069
Sudha, D., Dhanapandian, S., Manoharan, C., & Arunachalam, A. (2016). Structural, morphological and electrical properties of pulsed electrodeposited CdIn 2 Se 4 thin films.Results in Physics. 6: 599-605. https://doi.org/10.1016/j.rinp.2016.09.004
Tan, S., Zhang, X., Zhen, R., Tian, Z., & Wang, Z. (2015). Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering. 120: 54-59.
Tauc, J. (1974). Amorphous and Liquid Semiconductors. Springer US. Uglov, V. V., Abadias, G., Zlotski, S. V., Saladukhin, I. A., Skuratov, V. A., Leshkevich, S. S., & Petrovich, S. (2015). Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms. 354: 264-268. https://doi.org/10.1016/j.nimb.2014.12.043
Vemuri, R. S., Bharathi, K. K., Gullapalli, S. K., & Ramana, C. V. (2010). Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO 3 Films. ACS Applied Materials & Interfaces. 2 (9): 2623-2628. https://doi.org/10.1021/am1004514
Wang, D.-Y., Chang, C.-L., Hsu, C.-H., & Lin, H.-N. (2000). Synthesis of (Ti, Zr)N hard coatings by unbalanced magnetron sputtering. Surface and Coatings Technology. 130 (1): 64-68. https://doi.org/10.1016S0257-8972(00)00675-7
Wang, Y. X., Zhang, S., Lee, J. W., Lew, W. S., & Li, B. (2013). Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite. Applied Surface Science. 265: 418-423. https://doi.org/10.1016/j.apsusc.2012.11.022
Zhang, S., Sun, D., Fu, Y., Pei, Y. T., & De Hosson, J. T. M. (2005). Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surface and Coatings Technology. 200 (5-6): 1530-1534. https://doi.org/10.1016/j.surfcoat.2005.08.080
Declaración de originalidad y cesión de derechos de autor
Los autores declaran:
- Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
- Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
- Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
- En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
- Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.
Transferencia de derechos de autor
En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:
Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.
Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.
Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.
La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.