Influence of the temperature on the band-gap energy of reduced graphene-oxide nanoplatelets described with the Varshni model
PDF

How to Cite

Prías-Barragán, J. J. (2023). Influence of the temperature on the band-gap energy of reduced graphene-oxide nanoplatelets described with the Varshni model. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(185), 807–821. https://doi.org/10.18257/raccefyn.2008

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The present study estimated the influence of temperature on the band-gap energy in reduced graphene oxide (rGO) nanoplatelets obtained from bamboo. Individual rGO nanoplatelets were synthesized via double thermal decomposition (DTD) in a pyrolysis system under a controlled nitrogen atmosphere and carbonization temperature fixed at TCA = 973 K. For the electrical characterization of individual rGO nanoplatelets, the I-V curves method was used at four electrical contacts of Pt nano-wires grown by focused electron-ion beam induced deposition (FEBID) system. The influence of temperature on the band-gap energy (Eg(T)) was estimated via electrical resistivity measurements taken at different temperatures varying from 30 to 290 K. As regards the electrical properties, the rGO samples exhibited an electrical response at room temperature, acting as a narrow band-gap semiconductor with a band-gap energy value of 0.11 eV and an electrical response at low temperature described mainly by the Mott 3-dimensional variable range hopping (VRH-3D) model. The Eg(T) dependence was analyzed considering the Varshni, Bose-Einstein, Magnoogian-Wooley, Viña, et al., and Päsler phenomenological models. The Varshni model adequately described the Eg(T) behavior with extrapolated Eg(T = 0 K) value at 0.292 eV and Varshni parameters at α = 6.70 x 10-4 eV/K and β = 33.62 K. These values agree with the known order of magnitude of the Varshni coefficients reported for other narrow band-gap semiconductors such as InAs and InSb. Hydroxyl bridges on rGO were found modifying carbon-carbon bond length and controlling electrical responses, as previously reported when employing first-principle calculations via the density functional theory (DFT). These results suggest that individual rGO nanoplatelets can be excellent materials for developing advanced electronics for sensors and devices.

https://doi.org/10.18257/raccefyn.2008

Keywords

Reduced graphene oxide | Nanoplatelets | Band-gap energy | HR-TEM
PDF

References

Abbas Z, Soomro, R. A., Kalmar, N. H., Mawada, T., Willander, M., Karakus, S. K., Ayben K. (2020). In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker. Sensors, 20, 148 1-10.

Amir Faiz, M.S., Che Azurahanim, C.A., Yazid, Y., Suriani, A.B., Siti Nurul, A. M. (2020). Preparation and characterization of graphene oxide from tea waste and its photocatalytic application of TiO2/graphene nanocomposite. Journal Material Research Express, 7, 015613 1-9.

Arango Hoyos, B. E., Franco Osorio, H., Valencia Gómez, E. K., Guerrero Sánchez, J., Del Canto Palominos, A. P., Larrain, F. A, Prías-Barragán, J. J. (2023). Exploring the capture and desorption of CO2 on graphene oxide foams supported by computational calculations. Nature: Science Reports, 13, 14476 1-15.

Arias-Niquepa, R. A., Prías-Barragán, J. J., Ariza-Calderón, H., Rodríguez-García, M. E. (2019). Activated carbon obtained from bamboo: Synthesis, morphological, vibrational, and electrical properties and possible temperature sensor. Physical Status Solidi A, 2019, 1800422 1-11.

Benevidesa, A.P., Campos, A.R., Vieira, L.C., Perez, C. dos Reis., Vargas, C.D. (2020). Reduced Graphene Oxide-Zinc Oxide Flower-Like Composite for Glass-Ionomer Materials Reinforcement. Materials Research, 23, e20190580 1-9.

Geim,A.K., Novoselov, K.S. (2007). The rise of graphene. Nat. Mater, 6, 183-191.

Geng, L., Wu, S., Zou, Y., Jia, M., Zhang, W., Yan, W., Liu, G. (2014). Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol. J. Colloid Interface Sci, 421, 71-77.

Geng, Y., Wang, S. J., Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal Colloid Interface Science, 336, 592-598.

Ghosh, R., Singh, A., Santra, S., Ray, S. K., Chandra, A., Guha, P. K. (2014). Highly sensitive largearea multi-layered graphene-based flexible ammonia sensor. Sens. Actuators B, 205, 67-73.

Grande, L., Chundi, V.T., Wei, D., Bower, C., Andrew, P., Ryh€anen, T. (2012). Graphene for energy harvesting/storage devices and printed electronics. Particuology, 10, 1-8.

Gregory Thien S H, Pandikumar, A., Nay Ming, H., Hong Ngee, L. (2014). Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Nature: Science Reports, 4, 5044 1-8.

Gross, K., Prías-Barragán, J. J., Sangiao, S., Lajaunie, L., Arenal, R., Ariza-Calderón, H., Prieto, P. (2016). Electrical conductivity of oxidized-graphenic nanoplatelets obtained from bamboo: effect of the oxygen content. Nanotechnology, 27, 365708 1-10.

He, L. X., Tjong, S. C. (2013). Zener tunneling in conductive graphite/epoxy composites: Zener tunneling in conductive graphite/epoxy composites: Dielectric breakdown aspects. Express Polymers Letters, 7, 375-382.

He, Z., Xia, H., Zhou, X., Yang, X., Song,Y., Wang, T. (2011). Raman study of correlation between defects and ferromagnetism in graphite. J. Phys. D: Appl. Phys, 44, 085001-9.

Hoyos-Ariza, F. A., Prías-Barragán, J, J., Galván, D. H., Guerrero-Sánchez, J., Ariza-Calderón, H. (2023). Graphene nanostructures functionalization: Hydrogen bonds and oxide coverage effect. Materials Today Communications, 36, 106861 1-11.

Hyo, J. K., Sung-Min, L., Yoon-Suk, O., Young-Hwan, Y., Young Soo, L., Dae, Ho Y., Changgu, L., Jong-Young, K., Rodney, S. (2014). Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix. Nature: Science Report, 4, 5176 1-10.

ISO Technical specification (2008). Nanotechnologies — Terminology and definitions for nanoobjects — Nanoparticle, nanofibre and nanoplatelet. ISO/TS 2008, 27687:2008(E).

Jia, G., Zhang, W., Jin, Z., An, W., Gao, Y., Zhang, X., Liu, J. (2014). Electrocatalytically Active MOF/Graphite Oxide Hybrid for Electrosynthesis of Dimethyl Carbonate. Electrochimica Acta, 144, 1-6.

Jiang, H., Chen, P., Zhang, W., Luo, S., Luo, X., Peter, C. Au., Li, M. (2014). Deposition of nano Fe3O4@mZrO2 onto exfoliated graphite oxide sheets and its application for removal of amaranth. Appl. Surf. Sci, 317, 1080-1089.

Kajen, R. S., Chandrasekhar, N., Pey, K. L., Vijila., C, Jaiswal M., Saravanan, S., Andrew M H Ng., Wong, C. P., Loh, K.P. (2013). Trap Levels in Graphene Oxide: A Thermally Stimulated current study. ECS Solid State Letters, 2, M17-M19.

Kigozi, M., Koech, R. K., Kingsley, O., Ojeaga, I., Tebandeke, E., Kasozi, G. N., Onwualu, A. P. (2020). Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications. Results in Materials, 7, 100113 1-12.

Kim, M., Kang, G. H., Park, H. W., Park, Y. B., Park, Y. H., Yoon, K. H. (2012). Design, Manufacturing, and Characterization of High-Performance Lightweight Bipolar Plates Based on Carbon Nanotube-Exfoliated Graphite Nanoplatelet Hybrid Nanocomposites. Journal of Nanomaterials, 159737, 1-8.

Krystek, W., Malikova, L., Pollak, F. H. (1995). Contactless electroreflectance study of temperature dependence of fundamental band gap of ZnSe. Acta Physica Polonica A, 88 (5), 1013-1017.

Kuzemsky, A. L. (2013). Unconventional and exotic magnetism in carbon-based structures and related materials. Journal of Modern Physics B, 27, 1330007 1-40.

Kyzas G. Z, Bikiaris D. N., Deliyanni E. A. (2014). Advanced low-swelling chitosan/graphite oxide-based biosorbents. Mater. Lett. 128, 46-49.

Li, Fenfen., Linyu, L., Yunxuan, W. (2020). A Review on the Contemporary Development of Composite Materials Comprising Graphene/Graphene Derivatives. Advances in Materials Science and Engineering, 2020, 1-16.

Liu, Z., Duan, X., Cheng, H., Zhou, J., Zhou, X., Yuan, W. (2015). Synthesis of platinum/graphene composites by a polyol method: The role of graphite oxide precursor surface chemistry. Carbon, 89, 93-101.

Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J.M., Alarcon, E., Chigrin, D. N. (2012). Photonics and Nanostructures – Fundamentals and Applications, 10, 353-358.

Lobato, B., Wendelbo, R., Barranco, V., Centeno, T. A. (2014). Graphite Oxide: An Interesting Candidate for Aqueous Supercapacitors. Electrochimica Acta, 149, 245-251.

Makarova, T. L., Shelankov, A. L., Serenkov, I. T., Sakharov, V. I., Boukhvalov, D. W. (2011). Anisotropic magnetism of graphite irradiated with medium-energy hydrogen and helium ions. Physical Reviews B, 83, 085417 1-8.

Matsuo, Y., Ueda, K. (2014). Pyrolytic carbon from graphite oxide as a negative electrode of sodium-ion battery. Journal of Power Source, 263, 158-162.

Mineo, H., Kondo, H., Hori, M. (2013). Graphene Nanowalls. In Tech Chapter 9. 235-260.

Mishra, A. K., Ramaprabhu, S. (2012). Graphene-based nano-patch antenna for terahertz radiation. Chem. Eng. J.,187, 10-15.

Mizoguchi, T., Misaki, H., Shintaro, I., Michio, K. (2020). Free Standing Graphene Oxide Membrane with Epoxy Groups for Water Purification. Chemical Letters, 49, 376-378.

Mu. X., Wu, X., Zhang, T., Go, D. B., Luo, T. (2014). Thermal Transport in Graphene Oxide –From Ballistic Extreme to Amorphous Limit. Nature: Science Reports, 4, 3909 1-9.

Naser, A. A., Al-Sawaad, H. Z., Al-Mubarak, A. S. (2020). Novel graphene oxide functionalization by urea and thiourea, and their applications as anticorrosive agents for carbon steel alloy in acidic medium. J. Mater. Environ. Sci, 11, 3 404-420.

Newman, L., Rodrigues, A. F., Jasim Dhifaf, A., Vacchi, I. A., Menard-Moyon, C., Bianco, A., Busy, C., Kostarelos, K. (2020). Nose-to-Brain translocation and cerebral biodegradation of thin graphene oxide nanosheets. Cell Reports Physical Science, 1, 100176 1-23.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M.I., Grigorieva, I. V., Dubonos, S.V., Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.

O’Donnell, K. P., Chen, X. (1991). Temperature dependence of semiconductor band gaps. Appl. Phys. Letters, 58, 2924-2926.

Pässler, R. (1997). Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors. Phys. Stat. Sol. B, 200, 155-172.

Petit, C., Bandosz, T. J. (2015). Engineering the surface of a new class of adsorbents: Metal–organic framework/graphite oxide composites. J. Colloid Interface Sciences, 447, 139-151.

Prías-Barragán, J. J. (2018). Transport mechanisms study in graphite oxide platelets obtained from bamboo for possible applications in electronic. Doctoral Thesis, University of Valle, Colombia, 1, 1-209.

Prías-Barragán, J. J., Echeverry-Montoya, N. A., Ariza-Calderón, H. (2015). Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39, 444-449.

Prías-Barragán, J.J., Gross, K., Ariza-Calderón, H., Prieto, P. (2016). Synthesis and vibrational response of graphite oxide platelets from bamboo for electronic applications. Phys. Status Solidi A, 213, 85-90.

Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2018). Transport mechanisms study in graphene oxide multilayers obtained from bamboo as source material and possible applications in electronic. Revista de Divulgación Científica y Tecnológica, del Instituto Interdisciplinario de las Ciencias de la Universidad del Quindío, 1, 9-47.

Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2019). Graphene Oxide Multilayers Obtained from Bamboo: New Synthesis Method, Basic Properties, and Future Electronic Applications. Wiley Scrivener Publishing LLC, London UK. 8, 191-236.

Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2019). Graphene oxide multilayers: Synthesis, properties and possible applications in electronics. Latin American Electron Devices Conference IEEE 1, 61-64.

Prías-Barragán, J.J., Gross, K., Ariza-Calderón, H., Prieto, P., Di Giorgio, C., Bobba, F., Cucolo, A.M. (2021). Room-temperature ferromagnetism in oxidized-graphenic nanoplatelets induced by topographic defects. Journal of Magnetism and Magnetic Materials, 524, 167664 1-11.

Prías-Barragán, J. J., González-Hernández, R., Hoyos-Ariza, F., Ramírez, J. G., Ibarra, M. R., Príeto, P. (2022). Magnetism in graphene oxide nanoplatelets: The role of hydroxyl and epoxy bridges. Journal of Magnetism and Magnetic Materials, 541, 168506 1-8.

Prías-Barragán, J. J., Gross, K., Perea, J.D., Killilea, N., Heiss, W., Brabec, C. J., Ariza-Calderón, H., Prieto, P. (2020). Graphene Oxide Thin Films: Synthesis and Optical Characterization. Chemistry Select, 5, 11737-11744.

Prusty, G., Swain, S. K. (2012). Dispersion of expanded graphite as nanoplatelets in a copolymer matrix and its effect on thermal stability, electrical conductivity and permeability. New Carbon Materials, 27, 271-277.

Qiao, W. M., Song, Y., Huda, M., Zhang, X., Yoon, S. H., Mochida, I., Katou, O., Hayashi, H., Kawamoto, K. (2005). Development of carbon precursor from bamboo tar. Carbon, 43, 3021-3025.

Rao, C. N. R., Ramakrishna, Matte H. S., Subrahmanyam, K. S., Urmimala, M. (2012). Unusual magnetic properties of graphene and related materials. Chem. Sci. 3, 45-52.

Rozploch, F., Patyk, J., Stankowski, J. (2007). Graphenes Bonding Forces in Graphite Acta Phys. Polonica. A, 112, 557-563.

Rui Chen, Quan-Lin, Ye., He, T. C., Wu, T., Sun, H. D. (2011). Uniaxial tensile strain and exciton–phonon coupling in bent ZnO nanowires. Applied Physics Letters, 98, 241916-1-3.

Sachdeva, H. (2020). Recent advances in the catalytic applications of GO/rGO for green organic synthesis. Green Processing and Synthesis, 9, 515-537.

Sanchez-Trujillo, D. J., Osorio-Maldonado, L. V., Prías-Barragán, J. J. (2023). Temperature dependence of electrical conductivity and variable hopping range mechanism on graphene oxide films. Nature: Science Report, 13(4810), 1-12.

Sangwan, V. K., Southard, A., Moore, T. L., Ballarotto, V. W., Hines, D. R., Fuhrer, M. S., Williams, E. D. (2011). Transfer printing approach to all-carbon nanoelectronics. Nanoelectronics Microelectron. Eng. 88, 3150-3154.

Singh, A., Chandra, A. (2013). Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J. Appl. Electrochem. 43, 773-782.

Tang, L., Li, X., Ji, R., Teng, K. S., Tai, G., Ye, J., Wei, C., Lau, S. P. (2012). Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22, 5676-5683.

Tang, Q., Wu, J., Li, Q., Lin, J. (2008). High conducting multilayer films from poly (sodium styrene sulfonate) and graphite nanoplatelets by layer-by-layer self-assembly. Polymer, 49, 5329-5335.

Varshni, Y. P. (1967). Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154.

Vina. L., Iogothetidis, S., Cardona, M. (1984). Temperature dependence of the dielectric function of germanium. Physical Review B, 30 (4), 1979-1991.

Virendra, S., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science 56, 1178-1271.

Wallace, P.R. (1947). The band theory of graphite. Physical Review, 71(9), 622-634.

Wang, Y., Yingbo, Q., Yu, S., Meng, Z., Shaobo, D. (2020). A study on preparation of modified Graphene Oxide and flame retardancy of polystyrene composite microspheres Designed Monomers and Polymers, 23, 1-15.

Wei, T., Fan, Z., Zheng, C., Yao, C., Li, W. (2009). Movement-induced voltage properties of stable graphite nanoplatelet suspensions. Material Letters, 63, 1608-1610.

Xue, C., Zou, J., Sun, Z., Wang, F., Han, K., Zhu, H. (2014). Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells. International Journal Hydrogen Energy, 39, 7931-7939.

Zhang, Bo., Li, Q., Cui, T. (2012). Título del Artículo. Biosensors Bioelectron, 31, 105-109.

Zou, B. K., Zhang, Y. Y., Wang, J. Y., Liang, X., Ma, X. H, Chen, C. H, (2015). Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochimica Acta, 167, 25-31.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales