Static critical exponents, anisotropy, Hall and magnetocaloric effects, and magnetic interactions in FeCr, FeCo, and MnFe-based alloy ribbons
PDF (Español (España))

How to Cite

Rosales-Rivera, A. (2022). Static critical exponents, anisotropy, Hall and magnetocaloric effects, and magnetic interactions in FeCr, FeCo, and MnFe-based alloy ribbons. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(180), 656–674. https://doi.org/10.18257/raccefyn.1686

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

This paper presents a comparative study of the critical exponents (β, γ, δ), the critical temperatura Tc, the magnetic anisotropy, the Hall and magneto-caloric effects, and the magnetic interactions for the alloys [(Fe50Co50)75B20Si5]96Nb4, Fe65.5Cr8Cu1Nb3Si13.5B9, and Mn50Ni36Fe5Sn9 prepared by using melt spinning. The above critical parameters and the magneto-caloric effect were determined from magnetization measurements. The values (β, δ, TC) for [(Fe50Co50)75B20Si5]96Nb4 and Fe65.5Cr8Cu1Nb3Si13.5B9 were (0.34 ± 0.09; 4.50 ± 0.45; 660 ± 30 K) and (0.52 ± 0.04; 3.62 ± 0.06; 481 ± 2 K), respectively, and for Mn50Ni36Fe5Sn9 it was (0.51 ± 0.03; 2.97 ± 0.03; 318 ± 8 K). The Hall resistivity vs. H curves exhibit an HS inflection field below which ordinary and extraordinary Hall effects are observed. Above HS, the ordinary Hall effect predominates and the extraordinary one is no longer seen. The HS values for [(Fe50Co50)75B20Si5]96Nb4 and Fe65.5Cr8Cu1Nb3Si13.5B9 were 8 kOe and 4.42 kOe, respectively, and for Mn50Ni36Fe5Sn9, 1.84 kOe. The number of charge carriers, nc, was determined for H > HS, and its value for Fe65.5Cr8Cu1Nb3Si13.5B9 and Mn50Ni36Fe5Sn9 was 2.71 x 1019 cm-3 and 129 x 1019 cm-3, respectively. The change in magnetic entropy and relative cooling capacity due to a field change of 10 kOe were evaluated and their maximum values close to TC for [(Fe50Co50)75B20Si5]96Nb4 and Fe65.5Cr8Cu1Nb3Si13.5B9 were (0.6; 0.75) Jkg-1K-1 and (57.4; 56.6) Jkg-1, respectively, and for Mn50Ni36Fe5Sn9, 0.5 Jkg-1K-1 and 25.1 Jkg-1, respectively. The possible effects of the exchange and spin-orbit interactions on the above results were also analyzed.

https://doi.org/10.18257/raccefyn.1686

Keywords

Universality classes | Static critical exponents | Hall and magneto-caloric effects | Magnetic alloys
PDF (Español (España))

References

Aharoni, A. (1986). A possible interpretation of non-linear Arrots plots. Journal of Magnetism and Magnetic Materials, 58, 297-302.doi: https://doi.org/10.18257/raccefyn.1686

Arrott, A., Noakes, J.E. (1967). Approximate equation of state for nickel near its critical temperature. Physical Review Letters, 19, 786. https://doi.org/10.1103/PhysRevLett.19.786

Blázquez, J.S., Franco, V., Conde, A., Gottschall, T., Skokov, K.P., Gutfleisch, O. (2016). A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys. Applied Physics Letters, 109, 122410-1. https://doi.org/10.1063/1.4963319

Blundell, S. (2001). Magnetism in Condensed Matter. London, Great Bretain: Oxford University Press.

Brück, E. (2005). Developments in magnetocaloric refrigeration. Journal of Physics D: Applied Physics, 38(23), R381-R391. https://doi.org/10.1088/0022-3727/38/23/R01

Buznikov, N.A., Kurlyandskaya, G. V. (2019). Magnetoimpedance in Symmetric and Non-Symmetric Nanostructured Multilayers: A Theoretical Study. Sensors, 19(8), 1761. https://doi.org/10.3390/s19081761

Campillo, G., Berger, A., Osorio, J., Pearson, J. E., Bader, S. D., Baca, E., Prieto, P. (2001).

Substrate dependence of magnetic properties of La0.67Ca0.33 MnO3 films. Journal of Magnetism

and Magnetic Materials, 237(1), 61-68. https://doi.org/10.1016/S0304-8853(01)00482-6

Collins, M. F. (1989). Magnetic Critical Scattering. New York, USA: Oxford University Press.

Franco, V., Conde, A. (2012). Magnetic refrigerants with continuous phase transitions: Amorphous

and nanostructured materials. Scripta Materialia, 67, 594-599. https://doi.org/10.1016/j.scriptamat.2012.05.004

Franco, V., Blázquez, J.S., Conde, A. (2006). Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Applied Physics Letters, 89, 222512. https://doi.org/10.1063/1.239936

Franco, V., Blázquez, J.S., Ingale, B., Conde, A. (2012). The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annual Review of Materials Research, 42, 305-342. https://doi.org/10.1146/annurevmatsci-062910-100356.

Franco, V., Conde, A., Kiss, L.F. (2008). Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott–Noakes equation of state. Journal of Applied Physics, 104, 033903. https://doi.org/10.1063/1.2961310

Franco, V., Conde, A., Kuz’min, M.D., Romero-Enrique, J.M. (2009). The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?. Journal of Applied Physics, 105, 07A917. https://doi.org/10.1063/1.3063666

Ghosh, S., Ghosh, A., Mandal, K. (2021). Reversible magnetocaloric effect and critical exponent análisis in Mn-Fe-Ni-Sn Heusler alloys. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2018.02.269

Gómez, M., Rosales-Rivera, A., Pineda-Gómez, P., Muraca, D., Sirkin, H. (2008). Thermal, structural and magnetic characterization of Co-based alloys. Microelectronics Journal, 39, 1242-1244. https://doi.org/10.1016/j.mejo.2008.01.088

Gonçalves, L.P., Soares, J., Machado, F.A., Rodrigues, A.R. (2006). Hall and giant magnetoimpedance effects in the Co70Fe5Si15B10 metallic glass. Journal of Non-Crystalline Solids, 3659-3662. https://doi.org/10.1016/j.jnoncrysol.2006.03.106

Griffiths, R. (1967). Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point. Physical Review, 158(5), 176-187. https://doi.org/10.1103/PhysRev.158.176

Gschneidner, K.A., Pecharsky, J.K. (2000). Magnetocaloric Materials. Annual Review of Materials Science, 30, 387- 429. https://doi.org/10.1146/annurev.matsci.30.1.387

Kadanoff, L. P. (1976). Scaling, Universality and Operator Algebras. En C. Domb, & M. Green (Edits.), Phase Transitions and Critical Phenomena, Vol 5A, p 1 - 34). New York, USA: Academic Press Inc.

Knobel, M., Pirota, K.R. (2002). Giant magnetoimpedance: Concepts and recent progress. Journal of Magnetism and Magnetic Materials, 242-245, 33-40.

Knobel, M., Vázquez, M., Krauss, L. (2003). Giant magneto impedance. En Handbook of Magnetic Materials (Vol. 15, págs. 1- 9). Amsterdam: K. H. Buschow, Ed. Amsterdam, The Netherlands: Elsevier.

Kouvel, J.S. (1957). Methods for determining the Curie temperature of a ferromagnet. Report No.57-RL-1799, General Electric Research Lab.

Kouvel, J.S., Fisher, M.E. (1964). Detailed Magnetic Behavior of Nickel Near its Curie Point. Physical Review, 136, A1626.https://doi.org/10.1103/PhysRev.136.A1626

Luo, Q., Zhao, D. Q., Pan, M.X., Wang, W.H. (2006). Magnetocaloric effect in Gd-based bulk metallic glasses. Applied Physics Letters, 89, 081914:1-3. https://doi.org/10.1063/1.2338770

Machado, F. A., Da Silva, B. L., Montarroyos, E. (1993). Magnetoresistance of the random anisotropic Co70.4Fe4.6Si15B10 alloy. Journal of Applied Physics, 73, Art. no. 6387. https://doi.org/10.1063/1.352659

Machado, F.A., Martins, C.S., Rezende, S.M. (1995). Giant magnetoimpedance in the ferromagnetic alloy Co75−xFexSi15B10. Physical Review B, 51, Art. no. 3926. https://doi.org/10.1103/PhysRevB.51.3926

Makhotkin, V. E., Shurukhin, B. P., Lopatin, V. A., Marchukov, P. Y., Levin, Y. K. (1991). Magnetic field sensors based on amorphous ribbons. Sens. Actuators. A. Physics, 27, 759- 762. doi: https://doi.org/10.18257/raccefyn.1686

Melnikov, G.Y., Lepalovsky, V.N., Kurlyandskaya, G.V. (2022). GMI-Detection of a Magnetic Composite Imitating a Blood Vessel Clot. Russian Physics Journal, 64, 1880-1885. https://doi.org/10.1007/s1118202202536-1

Melo-Quintero, J.J., Rosales-Rivera, A., Giraldo-Daza, H. (2010). Hall effect and resistivity measurements in CoFe-based amorphous magnetic alloys. Momento, Revista de Física, 41, 37-48.

Panina, L. V., Mohri, K., Bushida K., Noda, M. (1994). Ultrasoft finemet thin films for magnetoimpedance microsensors. Journal of Applied Physics, 76, Art. no. 074010.

Phan, M.H., Peng, H. (2008). Giant magnetoimpedance materials: Fundamentals and applications. Progress in Material Science, 53, 323-420. https://doi.org/10.1016/j.pmatsci.2007.05.003

Provenzano, V., Shapiro, A.J., Shull, R.D. (2004). Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 429, 853-857. https://doi.org/10.1038/nature02657

Prudnikova, M.V., Kozlova, T.M., Prudnikov, V.N., Granosky, A.B. (1997). Hall effect and magnetoresistance in rapidly quenched FeB ribbons. Journal of Magnetism and Magnetic Materials, 166, 201 206. https://doi.org/10.1016/S0304-8853(96)00500-8

Remya, U.D., Athul, S.R., Arun, K., Swathi, S., Dzubinska, A., Reiffers, M., Ramamoorthi, N. (2021). Investigations on magnetic, magnetocaloric and transport properties of Co2Ti1-xSn1+x (x = 0.25, 0.5). National Conference on Physics and Chemistry of Materials: NCPCM2020.2369, pág. 020086. India: AIP Conference Proceedings. https://doi.org/10.1063/5.0061244

Rosales-Rivera, A., Gónzalez-Sánchez, R. F., Hernández-Parra, J. C., Velásquez-Salazar, A.,

Saccone, F. D. (2019). Shifting from Ising model to Heisenberg model critical behavior and the departure from these models in Fe73.5−xCrxCu1Nb3Si13.5B9. Journal of Magnetism andMagnetic Materials, 482, 251-261. https://doi.org/10.1016/j.jmmm.2019.03.031

Rosales-Rivera, A., González-Sánchez, R. F., Velásquez-Salazar, A. A., López-Tabares, J.,

Salazar-Henao, N. A., Gómez-Montoya, D. F., Saccone, F. D. (2021). Magnetic Critical Behavior, Hall and Magneto-Impedance Effects in Fe–Co-Based Metallic Glasses IEEE Transactions on Magnetics, 57(2), 4400206. https://doi.org/10.1109/TMAG.2020.3013294

Rosales-Rivera, A., Moscoso-Londoño, O., Muraca, D. (2012). Magnetization dynamics and magnetic hardening in amorphous FeBSi alloys. Revista Mexicana de Física, 58(2), 155-159.

Rosales-Rivera, A., Valencia, V. H., Pineda-Gómez, P. (2007). Three-peak behavior in giant magnetoimpedance effect in Fe73.5−xCrxNb3Cu1Si13.5B9 amorphous ribbons. Physica B, 398, 252-255. https://doi.org/10.1016/j.physb.2007.04.026

Rosales-Rivera, A., Valencia, V. H., Quintero, D. L., Pineda-Gómez, P., Gómez, M. M. (2006). Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons. Physica B, 384, 169-171. https://doi.org/10.1016/j.physb.2006.05.217

Rushbrooke, G.S. (1963). On the Thermodynamics of the Critical Region for the Ising Problem. The Journal of Chemical Physics, 39(3),842. https://doi.org/10.1063/1.1734338

Saccone, F.D. (2021). Estudio de espectroscopia Mössbauer en aleaciones Heusler Mn50Ni41- xFexSn9 con x = 0, 5, y 10. Escrito-correo electrónico, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina, Física, Facultad de Ingeniería. Obtenido de fsaccone@fi.uba.ar

Tishin, A.M., Spichkin, Y.I. (2003). The Magnetocaloric Effect and its Applications. Bristol, Great Bretain: Institute of Physics.

Wang, D., Peng, K., Gu, B., Han, Z., Tang, S., Qin, W., Du, Y. (2003). Influence of annealing on the magnetic entropy changes in FeMoZrNbBCu amorphous ribbons. Journal of Alloys and Compounds, 358, 312-315. https://doi.org/10.1016/S0925-8388(03)00075-6

Widom, B. (1965). Equation of State in the Neighborhood of the Critical Point. The Journal of Chemical Physics, 43(11), 3898. https://doi.org/10.1063/1.1696618

Wilson, K. G. & Kogut, J. (1974). The renormalization group and the ε-expansion. Physics Report, 12C(2), 75-200.

Wood, M. E. & Potter, W. H. (1985). General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics, 25(12), 667-683.

https://doi.org/10.1016/0011-2275(85)90187-0

Yang, Z., Chlenova, A.A., Golubeva, E.V., Volchkov, S.O., Guo, P., Shcherbinin, S.V., Kurlyandskaya, G.V. (2019). Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander Shaped Elements for Sensor Application. Sensors, 19(11), 2468 10.3390/s19112468. https://doi.org/10.3390/s19112468

Yang, Z., Lei, J., Lei, C., Zhou, Y., Wang, T. (2014). Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned Co-based ribbon with a meander structure. Applied Physics A, 116, 1847-1851. https://doi.org/10.1007/s00339-014-8343-1

Yeomans, J.M. (1992). Statistical Mechanics of Phase Transitions. New York, USA: Oxford University Press Inc.

Zou, J., Chen, Y., Li, X., Song, Y., Zhao, Z. (2019). Observation of the transition state of domain wall displacement and GMI effect of FINEMET/graphene composite ribbons. RSC Advances, 9 (67), 39133-39142. https://doi.org/10.1039/c9ra07642e

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales